汤立群科研成果_汤立群专利信息_华南理工大学土木与交通学院汤立群科研信息|汤立群校企合作信息|汤立群联系方式
全国客户服务热线:4006-054-001 疑难解答:159-9855-7370(7X24受理投诉、建议、合作、售前咨询),173-0411-9111(售前),155-4267-2990(售前),座机/传真:0411-83767788(售后),微信咨询:543646
企业服务导航

汤立群科研成果

发布日期:2024-05-03 专利申请、商标注册、软件著作权、资质办理快速响应 微信:543646


汤立群
姓名 汤立群 性别
学校 华南理工大学 部门 土木与交通学院
学位 教授 学历 教授
职称 教授 联系方式
邮箱 lqtang@scut.edu.cn    
软件产品登记测试全国受理 软件著作权666元代写全部资料全国受理 实用新型专利1875代写全部资料全国受理
汤立群

更新日期:2018年9月5日 姓 名 汤立群 性 别 男 出生年月 1966年11月 籍贯 民 族 汉族 政治面貌 无党派 最后学历 博士研究生毕业 最后学位 理学博士 技术职称 教授 导师类别 博、硕导 行政职务 Email lqtang@scut.edu.cn 工作单位 土木与交通学院 邮政编码 510641 通讯地址 单位电话 个人简介 汤立群,华南理工大学土木与交通学院工程力学教授、博导;亚热带建筑科学国家重点实验室固定研究员。1988年、1991年分别毕业于中国科学技术大学近代力学系爆炸力学专业,分别获理学学士学位和硕士学位; 1994年毕业于中国科学技术大学近代力学系固体力学专业,获理学博士学位。曾到香港理工大学任副研究员、中国科学院做高级访问学者、美国德州A&M大学和洛斯阿拉莫斯国家实验室做访问学者。现为广东省力学学会第九届理事会理事长、《Mechanics of Advanced Materials and Structures》、《International Journal for Computational Methods in Engineering Science & Mechanics》和《实验力学》等期刊编委。目前主要从事材料和结构的冲击与破坏行为研究,目前的主要研究方向包括:(1)非均质材料细观结构与破坏机理;(2)结构损伤与长期健康监测;(3)冲击动力学等。在非均匀材料方面,重点关注水凝胶、泡沫金属、先进混凝土等细观几何非均匀材料的细观特征表征、建模与仿真。承担了国家自然科学基金重点项目、面上项目、广东省应用型重大专项项目、广东省自然科学重点基金等科技项目多项。获省部级奖项三项。在《Mechanics of Materials》、《Smart Materials and Structures》、《中国科学》、《爆炸与冲击》和《实验力学》等期刊上发表期刊论文100多篇,其中被SCI索引收录50多篇。 科研项目 承担的科研项目1. 动态多轴加载下泡沫金属的本构关系研究,国家自然科学基金,75万, 2018.01-2021.122. 面向桥梁长期健康监测的大数据处理技术及应用,广东省科技计划,500万, 2016.01-2018.123. 高低温冲击条件下泡沫金属材料及其复合结构的力学行为研究, 广东省重点基金,30万, 2016.01-2018.124. PVA凝胶材料的动态力学性能及实验测试技术与表征方法研究,国家自然科学基金,108万, 2015.01-2018.125.轻质泡沫金属复合结构的承载、吸能与隔热性能和多功能优化,国家自然科学基金,310万,2010.01-2014.12 (与中科大合作) 发表论文 [1] Chen J.F., Xu K.J., Tang L.Q⁎, Liu Z.J.a, Zhou L.C.Study on the optimal loading rates in the measurement of viscoelastic properties of hydrogels by conical indentation. Mechanics of Materials 2018,119: 42–48[2] Zeng, L., et al., Analysis of structural responses of bridges based on long-term structural health monitoring. MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2018. 25(1): p. 79-86.[3] Zhou L, Liu Z, Tang L, Pei Y: Design and characterization for a high-temperature dual-band random wall structure for airborne applications. MATER DESIGN 2017;114:264-270.[4] Zhang X, Tang L, Liu Z, Jiang Z, Liu Y, Wu Y: Yield properties of closed-cell aluminum foam under triaxial loadings by a 3D Voronoi model. MECH MATER 2017;104:73-84.[5] Zhang C, Tang L: Measuring elasto-plastic properties of solid wall materials of metallic foams at elevated temperatures by using indentation hardness technique. MATER HIGH TEMP 2017;34:41-44.[6] Chen Y, Ai S, Tang J, Pei Y, Tang L, Fang D: Characterizing the viscoelastic properties of hydrogel thin films by bulge test. J APPL MECH-T ASME 2017;84:1123-1128.[7] Zhang YR, Tang LQ, Xie BX, Xu KJ, Liu ZJ, Liu YP, Jiang ZY, Dong SB: A variable mass Meso-Model for he mechanical and Water-Expelled behaviors of PVA hydrogel in compression. INT J APPL MECH 2017;9[8] Dong S, Huang Z, Tang L, Zhang X, Zhang Y, Jiang Y: A three-dimensional collagen-fiber network model of the extracellular matrix for the simulation of the mechanical behaviors and micro structures. COMPUT METHOD BIOMEC 2017;20:991-1003.[9] Wu Y, Tang L, Liu Z, Liu Y, Jiang Z, Zhang X: Numerical study of the shape irregularity gradient in metallic foams under different impact velocities. J MATER ENG PERFORM 2017;26:3892-3900.[10] Zhou L, Wang P, Pei Y, Zeng A, Tang L, Liu Z, Liu Y, Jiang Z, Fang D: Design and characterization for dual-band and multi-band a sandwich composite radome walls. COMPOS SCI TECHNOL 2017;149:28-33.[11] Xie B, Tang L, Liu Y, Jiang Z, Liu Z: Numerical analysis on usability of SHPB to characterize dynamic Stress-Strain relation of metal foam. INT J APPL MECH 2017;9[12] Xi H, Tang L, Luo S, Liu Y, Jiang Z, Liu Z: A numerical study of temperature effect on the penetration of aluminum foam sandwich panels under impact. COMPOS PART B-ENG 2017;130:217-229.[13] Wu Y, Qiao D, Tang L, Liu Z, Liu Y, Jiang Z, Zhou L: Global topology of yield surfaces of metallic foams in principal-stress space and principal-strain space studied by experiments and numerical simulations. INT J MECH SCI 2017;134:562-575.[14] Jiang Z, Zhang H, Han J, Liu Z, Liu Y, Tang L: Percolation model of reinforcement efficiency for carbon nanotubes dispersed in thermoplastics. COMPOS PART A-APPL S 2016;86:49-56.[15] Dong S, Yan Y, Tang L, Meng J, Jiang Y: Simulation of 3D tumor cell growth using nonlinear finite element method. COMPUT METHOD BIOMEC 2016;19:807-818.[16] Liu Y, Ma D, Jiang Z, Xiao F, Huang X, Liu Z, Tang L: Dynamic response of expanded polystyrene concrete during low speed impact. CONSTR BUILD MATER 2016;122:72-80.[17] Zhang X, Tang L, Jiang Z, Liu Z, Liu Y, Fang D: Effects of Meso Shape Irregularity of Metal Foam on Yield Features under Triaxial Loading. INT J STRUCT STAB DY 2015;15[18] Xi H, Tang L, Yu J, Zhang X, Xie B, Liu Y, Jiang Z, Liu Z: Low velocity penetration mechanical behaviors of aluminum foam sandwich plates at elevated temperature. INT J STRUCT STAB DY 2015;15[19] Xie B, Tang L, Liu Y, Liu Z, Jiang Z: Research on the energy absorption properties of aluminum foam composite panels with enhanced ribs subjected to uniform distributed loading. J SANDW STRUCT MATER 2015;17:170-182.[20] Jiang Z, Qian K, Miao H, Yang J, Tang L: Path-independent digital image correlation with high accuracy, speed and robustness. OPT LASER ENG 2015;65:93-102.[21] Li L, Ren L, Wang L, Liu S, Zhang Y, Tang L, Wang Y: Effect of water state and polymer chain motion on the mechanical properties of a bacterial cellulose and polyvinyl alcohol (BC/PVA) hydrogel. RSC ADV 2015;5:25525-25531.[22] Yang B, Liu ZJ, Tang LQ, Jiang ZY, Liu YP: Mechanism of the strain rate effect of metal foams with numerical simulations of 3D voronoi foams during the split hopkinson pressure bar tests. INT J COMP METH-SING 2015;12[23] Zhang L, Wang T, Jiang Z, Kemao Q, Liu Y, Liu Z, Tang L, Dong S: High accuracy digital image correlation powered by GPU-based parallel computing. OPT LASER ENG 2015;69:7-12.[24] Dong S, Long Z, Tang L, Jiang Y, Yan Y: Simulation of growth and division of 3d cells based on finite element method. INT J APPL MECH 2014;6[25] Yang B, Tang L, Liu Y, Liu Z, Jiang Z, Fang D: The deformation measurement and analysis on Meso-Structure of aluminum foams during SHPB test. J TEST EVAL 2014;42:621-628.[26] Tang L, Shi X, Zhang L, Liu Z, Jiang Z, Liu Y: Effects of statistics of cell's size and shape irregularity on mechanical properties of 2D and 3D Voronoi foams. ACTA MECH 2014;225:1361-1372.[27] Zhang CY, Tang LQ, Liu ZJ, Liu YP, Huang XQ, Fang DN: Prediction of creep properties of Fiber-Reinforced Closed-Cell metallic foams. MECH ADV MATER STRUC 2014;21:761-771.[28] Meng J, Dong S, Tang L, Jiang Y: A hybrid mathematical model of Tumor-Induced angiogenesis with blood perfusion. TSINGHUA SCI TECHNOL 2014;19:648-657.[29] Liu Z, Li Y, Tang L, Liu Y, Jiang Z, Fang D: Localized reliability analysis on a large-span rigid frame bridge based on monitored strains from the long-term SHM system. SMART STRUCT SYST 2014;14:209-224.[30] Ai S, Mao Y, Pei Y, Fang D, Tang L: Numerical analysis of thermodynamic behaviour of Through-Thickness stitched sandwich laminate. APPL COMPOS MATER 2013;20:1161-1171.[31] Ai S, Mao Y, Pei Y, Fang D, Tang L: Study on aluminum honeycomb sandwich panels with random skin/core weld defects. J SANDW STRUCT MATER 2013;15:704-717.[32] Zhang CY, Tang LQ, Yang B, Zhang L, Huang XQ, Fang DN: Meso-mechanical study of collapse and fracture behaviors of closed-cell metallic foams. COMP MATER SCI 2013;79:45-51.[33] Ai S, Mao Y, Pei Y, Fang D, Tang L: Effect of stitching angle on mechanical properties of stitched sandwich panels. MATER DESIGN 2013;50:817-824.[34] Tang L, Luo X, Liu Z, Liu Y, He T, Fang D: Octonion structural response vector and potential structural damage identification method. INT J DAMAGE MECH 2013;22:572-589.[35] Ai S, Mao Y, Pei Y, Fang D, Tang L: Effect of stitch on thermodynamic properties of sandwiched thermal protection structures. COMPOS STRUCT 2013;99:41-47.[36] Pan B, Yu L, Wu D, Tang L: Systematic errors in two-dimensional digital image correlation due to lens distortion. OPT LASER ENG 2013;51:140-147.[37] Yang B, Tang L, Liu Y, Liu Z, Jiang Z, Fang D: Localized deformation in aluminium foam during middle speed Hopkinson bar impact tests. MAT SCI ENG A-STRUCT 2013;560:734-743.[38] Ai S, Tang L, Mao Y, Pei Y, Liu Y, Fang D: Effect of aggregate distribution and shape on failure behavior of polyurethane polymer concrete under tension. COMP MATER SCI 2013;67:133-139.[39] Ai S, Tang L, Mao Y, Liu Y, Fang D: Numerical analysis on failure behaviour of polyurethane polymer concrete at high strain rates in compression. COMP MATER SCI 2013;69:389-395.[40] Liu Y, Tang L, Ai S, Liu Z, He T, Jiang Z, Fang D: Design and mechanical properties of liquid rubber-based concrete. INT J APPL MECH 2013;5[41] Ai S, Tang L, Fang D: Effect of aggregate size and grading on the failure behavior of liquid rubber-based concrete under static tension. INT J APPL MECH 2012;4[42] Ai S, Tang L, Liu Z, Zhang C, Liu Y: Damages and failure features of liquid rubber-based concrete in statics tension by 2D dynamics numerical simulation. INT J DAMAGE MECH 2012;21:171-189.[43] Li Y, Tang L, Liu Z, Liu Y: Statistics and probability analysis of vehicle overloads on a rigid frame bridge from long-term monitored strains. SMART STRUCT SYST 2012;9:287-301.[44] Li Z, Zheng Z, Yu J, Tang L: Effect of temperature on the indentation behavior of closed-cell aluminum foam. MAT SCI ENG A-STRUCT 2012;550:222-226.[45] Peng L, Zhang H, Yang B, Tang L, Hemmer P, Liang H: Stress-Induced nanostructures through Laser-Assisted scanning probe nanolithography. SCANNING 2010;32:327-335.[46] He K, Zheng L, Dong S, Tang L, Wu J, Zheng C: PGO: A parallel computing platform for global optimization based on genetic algorithm. COMPUT GEOSCI-UK 2007;33:357-366.[47] Tang LQ, Tao XM, Choy CL: Possibility of using a coaxial cable as a distributed strain sensor by time domain reflectometry. SMART MATERIALS & STRUCTURES 2001;10:221-228.[48] Tao XM, Tang LQ, Du WC, Choy CL: Internal strain measurement by fiber Bragg grating sensors in textile composites. COMPOS SCI TECHNOL 2000;60:657-669.[49] Tang LQ, Tao XM, Choy CL: Effectiveness and optimization of fiber Bragg grating sensor as embedded strain sensor. SMART MATERIALS & STRUCTURES 1999;8:154-160.[50] Tang LQ, Tao XM, Du WC, Choy CL: Reliability of fiber Bragg grating sensors embedded in textile composites. COMPOS INTERFACE 1998;5:421-435. 我的团队 华南理工大学损伤力学团队简介:研究领域新材料:多胞材料;先进工程材料;软物质;新技术:新式霍普金森压杆动态测量技术;DIC、DVC数字图像测量技术;光纤光栅传感技术新机理:细观力学;材料与结构损伤力学(桥梁长期健康监测)核心成员汤立群(教授、博导)刘逸平(教授、博导)蒋震宇(教授、博导)刘泽佳(副教授、硕导)周立成(副研究员、硕导)学术顾问:白以龙院士、伍小平院士、方岱宁院士等

内容来自集群智慧云企服 软件著作权666元代写全部资料全国受理