赵天寿科研成果_赵天寿专利信息_南方科技大学|工学院, 机械与能源工程系赵天寿科研信息|赵天寿校企合作信息|赵天寿联系方式
全国客户服务热线:4006-054-001 疑难解答:159-9855-7370(7X24受理投诉、建议、合作、售前咨询),173-0411-9111(售前),155-4267-2990(售前),座机/传真:0411-83767788(售后),微信咨询:543646
企业服务导航

赵天寿科研成果

发布日期:2024-04-06 专利申请、商标注册、软件著作权、资质办理快速响应 微信:543646


赵天寿
姓名 赵天寿 性别
学校 南方科技大学 部门 |工学院, 机械与能源工程系
学位 学历
职称 讲席教授 联系方式 广东省深圳市南山区学苑大道1088号南方科技大学工学院北楼413
邮箱 zhaots@sustech.edu.cn    
软件产品登记测试全国受理 软件著作权666元代写全部资料全国受理 实用新型专利1875代写全部资料全国受理
赵天寿

教师主页 团队成员 科研项目 研究领域 学术成果 教学 科研分享 新闻动态 疼痛医学中心 成果介绍 软件 毕业去向 加入我们 联系我们 赵天寿 Google Scholar ResearcherID 讲席教授 |工学院, 机械与能源工程系 赵天寿,中国科学院院士、能源科学与工程热物理专家。1983年毕业于天津大学热物理工程系,1986年获该校硕士学位,1995年获得美国夏威夷大学博士学位。现任南方科技大学讲席教授、美国机械工程师学会(ASME) Fellow、英国皇家化学学会(RSC) Fellow、曾获Croucher资深研究成就奖、何梁何利基金科学与技术进步奖、国家自然科学二等奖、香港科大工程学杰出研究成就奖。入选Clarivate/Thomson Reuters 全球高被引科学家和最有影响力科学思想名录。任国际期刊International Journal of Heat and Mass Transfer主编与Energy & Environmental Science顾问编委。 赵院士长期致力热质传递理论和电池储能技术的研究。针对国家对可再生能源利用的重大需求,围绕燃料电池、液流电池、金属空气等流体电池储能装置中能量传递与转换关键科学问题,建立了电池储能系统中热质传递和电化学能量转换的耦合理论,提出了热、质、电子及离子协同传输方法,突破了高功率流体电池设计的关键技术。提出了以可充放电的液态能量载体储电的新方法,发明了充、放电装置彼此独立的新型储能系统,取得了系统效率与输出功率的同时跃升,将在解决风光电并网难题、实现可再生能源规模利用、解决空气污染与气候变化问题等方面将发挥重要作用。  个人简介 个人简介 研究领域 ◆ 能源工程:燃料电池以及先进电池储能装置中能量传递与转换 ◆ 传热传质:电池储能系统中热质传递和电化学能量转换的耦合理论 ◆先进数值模拟技术:多组分/多相传输的格子玻尔兹曼方法、计算流体动力学  教学 MEE5406 储能原理与技术,本研合上,春季学期 学术成果 查看更多   赵院士在国际权威学术期刊发表SCI论文410余篇,SCI引用21,000余次,h-因子达81,38篇为ESI高被引论文。出版英文专著5部、中英文专著章节9篇。受邀在美国机械工程师学会、国际可持续能源技术等重要国际学术会议上作主题/特邀报告70次。 著作及章节 1.S. Zhao, 2009, Micro Fuel Cells-Principle and Applications, Elsevier,ISBN:  0123747139. 2.An, T.S. Zhao, 2018, Anion Exchange Membrane Fuel Cells-Principles, Materials and Systems, Springer, ISBN: 978-3-319-71371-7. 3.Ni, T.S. Zhao, 2013, Solid Oxide Fuel Cells: From Materials to System Modeling, RSC,ISBN: 978-1-84973-654-1. 4.X. Liang, T.S. Zhao, 2012, Catalysts for Alcohol-Fuelled Direct Oxidation Fuel Cells, RSC, ISBN: 978-1-84973-405-9. 5.S. Zhao, K.D. Kreuer, T. Nguyen, 2007, Advances in Fuel Cells, Elsevier, ISBN-13: 978-0-08-045394-1. 6.S. Zhao, Q. Liao, 2004, “Singe-Phase and Phase-Change Heat Transfer in Porous Structures,” Heat Transfer Enhancement, (in Chinese, 81 pages). 7.S. Zhao, Z.X. Liang, J.B. Xu, 2009, Fuel Cells-Direct Alcohol Fuel Cells Overview, Encyclopedia of Electrochemical Power Sources,Pages 362-369,Elsevier, ISBN-13: 978-0-444-52093-7. 8.S. Zhao, C. Xu, 2009, Fuel Cells-Direct Alcohol Fuel Cells: Overview Performance and Operational Conditions, Encyclopedia of Electrochemical Power Sources, Pages 381-389, Elsevier, ISBN-13: 978-0-444-52093-7. 9.S. Zhao, R. Chen, 2009, Fuel Cells-Direct Alcohol Fuel Cells: Experimental Systems, Encyclopedia of Electrochemical Power Sources, Pages 428-435, Elsevier, ISBN-13: 978-0-444-52093-7. 10.S. Zhao, W.W. Yang, 2009, Fuel Cells-Direct Alcohol Fuel Cells: Modeling, Encyclopedia of Electrochemical Power Sources, Pages 436-445,Elsevier, ISBN-13: 978-0-444-52093-7. 11.S. Zhao, P. Cheng, 1998, “Heat Transfer in Oscillatory Flows,” Annual Review of Heat Transfer, Volume IX, pp. 359-420, Edited by L.T. Chang. 12.赵天寿,石泳, 2013,“微纳米尺度流体流动与传热的格子-玻尔兹曼模拟”(436)《10000个科学难题.物理卷》科学出版社. 13.赵天寿,陈蓉,2013,“燃料电池中与电化学反应耦合的热传输问题”(440)《10000个科学难题. 物理卷》科学出版社. 14.赵天寿,杨卫卫, 2013,“燃料电池中多相多组分传输过程的模拟” (442)《10000个科学难题. 物理卷》科学出版社. 期刊论文 1.T.S. Zhao, C. Xu, R. Chen, W.W. Yang, 2009, “Mass transport phenomena in direct methanol fuel cells,” Progress in Energy and Combustion Science 35 (2009) 275–292. 2.T.S. Zhao, R. Chen, W.W. Yang, C. Xu, 2009, “Small direct methanol fuel cells with passive supply of reactants,” Journal of Power Sources 191 (2009) 185–202. 3.T.S. Zhao, W.W. Yang, R. Chen, Q.X. Wu, 2010, “Toward operating direct methanol fuel cells with highly concentrated fuel,” Journal of Power Sources 195 (2010) 3451–3462. 4.T.S. Zhao, Y.S. Li, S.Y. Shen, 2010, “Anion-exchange membrane direct ethanol fuel cells: Status and Perspectives,” Frontiers of Energy and Power Engineering in China, 2010, 4(4): 443–458. 5.O.C. Esan, X. Shi, Y. Dai, L. An*, and T.S. Zhao*, Operation of liquid e-fuel cells using air as oxidant, Applied Energy 311(2022), 118677 6.Y.H. Wan, J. Sun, Q.P. Jian, X.Z. Fan*, T.S. Zhao*,A detachable sandwiched polybenzimidazole-based membrane for high-performance aqueous redox flow batteries,2022, 526, 231139 7.Q.L. Yue, C.X. He, J. Sun, J.B. Xu, T.S. Zhao* , A passive thermal management system with thermally enhanced water adsorbents for lithium-ion batteries powering electric vehicles, Applied Thermal Engineering, 207(2022) 118156 8.Y.W. Dai, J. Yu, P. Tan*, C. Cheng, T. Liu, S.Y. Zhao, Z.P. Shao, T.S. Zhao*, M. Ni*, Microscale-decoupled charge-discharge reaction sites for an air electrode with abundant triple-phase boundary and enhanced cycle stability of Zn-Air batteries, Journal of Power Sources, 2022, 525, 231108 9.L.C. Zhang, C. Zhao, Y.K. Lin, M.C. Wu, T.S. Zhao, A high-performance lithiated silicon–sulfur battery enabled by fluorinated ether electrolytes, Journal of Materials Chemistry A, 9(2021),25426 10.G.S. Nambafu, E.P. Delmo, U.B. Shahid, C. Zhang, Q. Chen, T.S. Zhao, P. Gao, K. Amine, and M.H. Shao, Pyromellitic diimide based bipolar molecule for total organic symmetric redox flow battery, Nano Energy (2022), 106963. 11.Y. Lei, B.W. Zhang, B.F. Bai, X. Chen, T.S. Zhao, A transient model for vanadium redox flow batteries with bipolar membranes, Journal of Power Sources, 2021, 496, 229829. 12.B. Liu, C.W. Tang, F.K. Sheong, G.C. Jia, T.S. Zhao, Artificial Bipolar Redox-Active Molecule for Symmetric Nonaqueous Redox Flow Batteries, ACS Sustainable Chemistry & Engineering, ACS Sustainable Chem. Eng. 2022, 10, 1, 613–621 13.X.D. Peng, C. Xiong, Y.K. Lin, C. Zhao, T.S. Zhao, Honeycomb‐like hierarchical porous silicon composites with dual protection for ultrastable Li‐ion battery anodes, SmartMat, 2021, 2: 579-590 14.C.K. Ho, C.Y.V. Li, L. Gao, K.Y. Chan, J.W. Chen, J.Y. Tang, J.F. Olorunyomi, C.Z. Liao, T.S. Zhao, Protonated Emeraldine Polyaniline Threaded MIL-101 as a Conductive High Surface Area Nanoporous Electrode. ACS Energy Letters, 2021, 6, 3769-3779. 15.Y. X. Ren, L. Wei, H. R. Jiang, C. Zhao, and T. S. Zhao, On-Site Fluorination for Enhancing Utilization of Lithium in a Lithium–Sulfur Full Battery. ACS Applied Materials & Interfaces, 12(48), 53860-53868. 16.Q.L. Yue, C.X. He, M.C. Wu, T.S. Zhao, 2021, Advances in thermal management systems for next-generation power batteries, International Journal of Heat and Mass Transfer, 2021, 181, 121853 17.J. Sun, M.C. Wu, X.Z. Fan, Y.H. Wan, C.Y.H. Chao, T.S. Zhao, 2021, Aligned microfibers interweaved with highly porous carbon nanofibers: A Novel electrode for high-power vanadium redox flow batteries, Energy Storage Materials, 43 (2021) 30-41 18.C.X. He, Q.L. Yue, M.C. Wu, Q. Chen, and T.S. Zhao, A 3D electrochemical-thermal coupled model for electrochemical and thermal analysis of pouch-type lithium-ion batteries, International Journal of Heat and Mass Transfer 181 (2021), 121855. 19.G.S. Nambafu, S.Kumar, C. Zhang, T.S. Zhao, Q. Chen, K. Amine, and M.H. Shao, An Organic Bifunctional Redox Active Material for Symmetric Aqueous Redox Flow Battery, Nano Energy (2021), 106422. 20.Y.K. Lin, M.C. Wu, J. Sun, L.C. Zhang, Q.P. Jian, T.S. Zhao, A High-Capacity, Long-Cycling All-Solid-State Lithium Battery Enabled by Integrated Cathode/Ultrathin Solid Electrolyte, Advanced Energy Materials, 2021, 2101612 21.L. Wei, Z.X. Guo, J. Sun, X.Z. Fan, M.C. Wu, J.B. Xu, T.S. Zhao, A convection-enhanced flow field for aqueous redox flow batteries, International Journal of Heat and Mass Transfer, 179(201), 121747 22.X. Shi, X.Y. Huo, O.C. Esan, X. Su, Y. Dai, Y.Ma, L. An, and T.S. Zhao, A liquid e-fuel cell operating at − 20 ◦C, Journal of Power Sources, 506(2021),230198 23.L.C. Zhang, C. Zhao, Q.P. Jian, M.C. Wu, T.S. Zhao, A high-performance lithiated silicon–sulfur battery with pomegranate-structured electrodes, Journal of Power Sources, 506(2021),230174 24.Q.P. Jian, Z.X. Guo, L.C. Zhang, M.C. Wu, T.S. Zhao. A hierarchical porous tin host for dendrite-free, highly reversible zinc anodes. Chemical Engineering Journal, 425(2021), 130643 25.S.B. Wan, X.W. Liang, H.R. Jiang, J. Sun, N. Djilali, T.S. Zhao, A coupled machine learning and genetic algorithm approach to the design of porous electrodes for redox flow batteries, Applied Energy, 298(2021), 117177 26.O.C. Esan, X. Shi, X. Su, Y. Dai, L. An, and T.S. Zhao, A computational model of a liquid e-fuel cell. Journal of Power Sources, 501(2021), 230023 27.B. Liu, C.W. Tang, H.R. Jiang, G.C. Jia, T.S. Zhao, Carboxyl-Functionalized TEMPO Catholyte Enabling High-Cycling-Stability and High-Energy-Density Aqueous Organic Redox Flow Batteries, ACS Sustainable Chemistry & Engineering,9(2021), 18, 6258–6265 28.Y.K. Lin, K. Liu, C. Xiong, M.C. Wu, T.S.Zhao. A composite solid electrolyte with an asymmetric ceramic framework for dendrite-free all-solid-state Li metal batteries, Journal of Materials Chemistry A, 9(2021), 9665-9674 29.Y. Lei, B.W. Zhang, B.F. Bai, X. Chen, T.S. Zhao, A transient model for vanadium redox flow batteries with bipolar membranes, Journal of Power Sources, 496(2021), 229829 30.B. Liu, C.W. Tang, H.R. Jiang, G.C. Jia, T.S. Zhao, 2020, An aqueous organic redox flow battery employing a trifunctional electroactive compound as anolyte, catholyte and supporting electrolyte, Journal of Power Sources, 477(2020), 228985. 31.J. Sun, H.R. Jiang, C. Zhao, X.Z. Fan, C. Chao, T.S. Zhao, 2020, Holey aligned electrodes through in-situ ZIF-8-assisted-etching for high-performance aqueous redox flow batteries, Science Bulletin, 66(9), 904-913. 32.J. Sun, M.C. Wu, H.R. Jiang, X.Z. Fan, T.S. Zhao, 2021, Advances in the design and fabrication of high-performance flow battery electrodes for renewable energy storage, 2021, 2, 100016 33.Y.H. Wan, J. Sun, H.R. Jiang, X.Z. Fan, T.S. Zhao. A highly-efficient composite polybenzimidazole membrane for vanadium redox flow battery. Journal of Power Sources, 2021, 489, 229502 34.J.T. Yu, T.S. Zhao, D. Pan. Tuning the Performance of Aqueous Organic Redox Flow Batteries via First-Principles Calculations. The Journal of Physical Chemistry Letters, 2020, 11 (24), 10433–10438. 35.B. Liu, C.W. Tang, C. Zhang, G.C. Jia, T.S. Zhao. Cost-Effective, High-Energy-Density, Nonaqueous Nitrobenzene Organic Redox Flow Battery, Chemistry of Materials, 2021, 33 (3), 978–986 36.R.H. Zhang, M.C. Wu, X.Z. Fan, H.R. Jiang, T.S. Zhao. A Li-S battery with ultrahigh cycling stability and enhanced rate capability based on novel ZnO yolk-shell sulfur host. Journal of Energy Chemistry, 2021, 55, 136-144. 37.Y.K. Lin, K. Liu, M.C. Wu, C. Zhao, T.S. Zhao, Enabling Solid-State Li Metal Batteries by In Situ Forming Ionogel Interlayers, ACS Appl. Energy Mater. 2020, 3, 5712−5721 38.B. Yang , H.R. Jiang , J. Xie , T.Z. Zhao, Y.C. Lu,Diphenyl ditelluride as a low-potential and fast-kinetics anolyte for nonaqueous redox flow battery applications, Energy Storage Materials, 2021, 35,761-771 39.Q.P. Jian, M.C. Wu, H.R. Jiang, Y.K. Lin, T.S. Zhao. A trifunctional electrolyte for high-performance zinc-iodine flow batteries, Journal of Power Sources, 2021, 484, 229238 40.C. Zhao, G.L. Xu, Z. Yu, L.C. Zhang, I.H. Hwang, Y.X. Mo, …, K. Amine, T.S. Zhao. “A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites”, Nature Nanotechnology, 2021, 16, 166-173 41.Q.L. Yue, C.X. He, H.R. Jiang, M.C. Wu, T.S. Zhao, 2020, “A hybrid battery thermal management system for electric vehicles under dynamic working conditions”, International Journal of Heat and Mass Transfer, 2021, 164, 120528 42.L.C. Zhang, C. Zhao, M.C. Wu, T.S. Zhao, 2020, “An energy-dense, flowable suspension of hollow carbon nanoshell-hosted sulfur as an electroactive material for flow batteries”, Journal of Power Sources, 2020, 478, 228750 43.Q.P. Jian, Y.H. Wan, J. Sun, M.C. Wu, T.S. Zhao, 2020, “A dendrite-free zinc anode for rechargeable aqueous batteries”, Journal of Materials Chemistry A, 2020,8, 20175-20184 44.L. Wei, X.Z. Fan, H.R. Jiang, K. Liu, M.C. Wu, T.S. Zhao, 2020, “Enhanced cycle life of vanadium redox flow battery via a capacity and energy efficiency recovery method”, Journal of Power Sources, 2020, 478, 228725. 45.K. Liu, M.C. Wu, H.R. Jiang, Y.K. Lin, T.S. Zhao, 2020, “An ultrathin, strong, flexible composite solid electrolyte for high-voltage lithium metal batteries”, Journal of Materials Chemistry, 2020,8, 18802-18809 46.C. Xiong, Z.Y. Wang, …, T.S. Zhao, 2020, “Bifunctional Effect of Laser-Induced Nucleation-Preferable Microchannels and in-situ formed LiF SEI in MXene for Stable Lithium-Metal Batteries”, Journal of Materials Chemistry A, 2020, 8, 14, 14114-14125 47.C. Xiong, G.Y. Zhu, H.R. Jiang, Q. Chen, T.S. Zhao, 2020, “Achieving Multiplexed Functionality in a Hierarchical MXene-based Sulfur Host for High-rate, High-loading Lithium-Sulfur Batteries”, Energy Storage Materials, 2020, 33, 147-157. 48.L. Zeng, Y.X. Ren, L. Wei, X.Z. Fan, T.S. Zhao, 2020, “Asymmetric porous polybenzimidazole membranes with high conductivity and selectivity for vanadium redox flow batteries”, Energy Technology, 2020, 8(10), 2000592. 49.J. Sun, H.R. Jiang, M.C. Wu, X.Z. Fan, C.Y.H. Chao, T.S. Zhao, 2020 “A novel electrode formed with electrospun nano-and micro-scale carbon fibers for aqueous redox flow batteries”, Journal of Power Sources, 470 (2020), 228441. 50.J. Sun, H.R. Jiang, M.C. Wu, X.Z. Fan, C.Y.H. Chao, T.S. Zhao, 2020, “Aligned hierarchical electrodes for high-performance aqueous redox flow battery”, Applied Energy, 271 (2020), 115235. 51.K. Liu, M.C. Wu, L. Wei, Y.K. Lin, T.S. Zhao, 2020, “A composite solid electrolyte with a framework of vertically aligned perovskite for all-solid-state Li-metal batteries”, Journal of Membrane Science, 610 (2020), 118265. 52.J. Sun, H.R. Jiang, B.W. Zhang, C.Y.H. Chao, T.S. Zhao, 2020, “Towards uniform distributions of reactants via the aligned electrode design for vanadium redox flow batteries”, Applied Energy, 259 (2020) 114198. 53.Q. He, J. Yu, H.R. Xu, D.Q. Zhao, T.S. Zhao, M. Ni, 2020, “Thermal effects in H2O and CO2 assisted direct carbon solid oxide fuel cells”, International Journal of Hydrogen Energy, 45 (2020) 12459-12475. 54.Y.X. Ren, H.R. Jiang, C. Xiong, C. Zhao, T.S. Zhao, 2020, “An in situ encapsulation approach for polysulfide retention in lithium–sulfur batteries”, Journal of Materials Chemistry A, 8 (2020) 6902-6907. 55.B. Chen, H.R. Xu, Y. Zhang, …, T.S. Zhao, M. Ni, 2019, “Combined methane reforming by carbon dioxide and steam in proton conducting solid oxide fuel cells for syngas/power co-generation”, International Journal of Hydrogen Energy, 44 (2019),15313-15321 56.Z.H. Zhang, B.F. Bai, L. Zeng, L. Wei, T.S. Zhao, 2019, “Aligned Electrospun Carbon Nanofibers as Electrodes for Vanadium Redox Flow Batteries”, Energy Technology, 7 (2019) 1900488. 57.K. Liu, R. Zhang, J. Sun, M.C. Wu, T.S. Zhao, 2019, “Polyoxyethylene (PEO) vertical bar PEO-Perovskite vertical bar PEO Composite Electrolyte for All-Solid-State Lithium Metal Batteries”, ACS Applied materials & Interfaces, 11 (2019) 46930-46937. 58.C. Xiong, Y.X. Ren, H.R. Jiang, M.C. Wu, T.S. Zhao, 2019, “Artificial Bifunctional Protective layer Composed of Carbon Nitride Nanosheets for High Performance Lithium–Sulfur Batteries”, Journal of Energy Storage, 26 (2019) 101006 59.L. Wei, C. Xiong, H.R. Jiang, X.Z. Fan, T.S. Zhao, 2020, “Highly catalytic hollow Ti3C2Tx MXene spheres decorated graphite felt electrode for vanadium redox flow batteries”, Energy Storage Materials, 25 (2020) 885-892. 60.Y.X. Ren, L. Zeng, C. Zhao, C. Xiong, Q. Chen, T.S. Zhao, 2020, “A safe and efficient lithiated silicon-sulfur battery enabled by a bi-functional composite interlayer”, Energy Storage Materials, 25 (2020) 217-223. 61.L. Zeng, J. Sun, T.S. Zhao, … 2020, “Balancing the specific surface area and mass diffusion property of electrospun carbon fibers to enhance the cell performance of vanadium redox flow battery”, International Journal of Hydrogen Energy, 45, 12565-12576 62.R.H. Zhang, C. Chi, M.C. Wu, K. Liu, T.S. Zhao, 2019, “A long-life Li–S battery enabled by a cathode made of well-distributed B4C nanoparticles decorated activated cotton fibers”, Journal of Power Sources, 451(2020), 227751 63.M.C. Wu, R.H. Zhang, K. Liu, J. Sun, K.Y. Chan, T.S. Zhao, 2019, “Mesoporous carbon derived from pomelo peel as a high-performance electrode material for zinc-bromine flow batteries”, Journal of Power Sources, 442(2019), 227255 64.H.R. Jiang, B.W. Zhang, J. Sun, X.Z. Fan, W. Shyy, T.S. Zhao, 2019, “A gradient porous electrode with balanced transport properties and active surface areas for vanadium redox flow batteries”, Journal of Power Sources, 440(2019), 227159 65.W.L. Gu, M.C. Wu, J. Sun, J.B. Xu*, T.S. Zhao*, 2019, “Atomically Dispersed Fe-Nx Active Sites within Hierarchical Mesoporous Carbon as Efficient Electrocatalysts for Oxygen Reduction Reaction”, Journal of Materials Chemistry A, 7 (2019) 20132-20138. 66.K. Liu, Y. Li, R.H. Zhang, M.C. Wu, B.L. Huang, T.S. Zhao, 2019, “Facile Surface Modification Method To Achieve an Ultralow Interfacial Resistance in Garnet-Based Li Metal Batteries”, ACS Applied Enegy Materials, 2 (2019) 6332–6340. 67.Y.X. Ren, L. Zeng, H.R. Jiang, W.Q. Ruan, Q. Chen*, T.S. Zhao*, 2019, Rational design of spontaneous reactions for protecting porous lithium electrodes in lithium–sulfur batteries, Nature Communications, 10 (2019) 3249 68.L. Wei, H.R. Jiang, Y.X. Ren, M.C. Wu, J.B. Xu, T.S. Zhao, 2019, “Investigation of an aqueous rechargeable battery consisting of manganese tin redox chemistries for energy storage”, Journal of Power Sources, 437(2019), 226918 69.H.R. Jiang, J. Sun, L. Wei, M.C. Wu, W. Shyy, T.S. Zhao, 2019, “A high power density and long cycle life vanadium redox flow battery”, Energy Storage Materials, 24 (2020) 529-540. 70.R.H. Zhang, M.C. Wu, X.Z. Fan, H.R. Jiang, T.S. Zhao, 2019, “Superior cycling life of Li–S batteries with high sulfur loading enabled by a bifunctional layered-MoO3 cathode”, Journal of Power Sources, 436(2019), 226840 71.M.C. Wu, H.R. Jiang, R.H. Zhang, L. Wei, K.Y. Chan, T.S. Zhao, 2019, “N-doped graphene nanoplatelets as a highly active catalyst for Br2/Br- redox reactions in zinc-bromine flow batteries,” Electrochimica Acta 318 (2019) 69-75. 72.K. Liu, R.H. Zhang, M.C. Wu, H.R. Jiang, T.S. Zhao, 2019, “Ultra-stable lithium plating/stripping in garnet-based lithium-metal batteries enabled by a SnO2 nanolayer”, Journal of Power Sources, 433(2019), 226691 73.L.Wei, L.Zeng, M.C.Wu, X.Z.Fan, T.S.Zhao, 2019, “Seawater as an alternative to deionized water for electrolyte preparations in vanadium redox flow batteries,” Applied Energy 251 (2019) 113344. 74.L. Wei, L. Zeng, M.C. Wu, H.R. Jiang, T.S. Zhao, 2019, “An aqueous manganese-copper battery for large-scale energy storage applications,” Journal of Power Sources 423 (2019) 203-210. 75.L. Shi, A. Xu, D. Pan, T.S. Zhao, 2019, “Aqueous proton-selective conduction across two-dimensional graphyne,” Nature Communications 10 (2019) 1165. 76.H.R. Jiang, L. Wei, X.Z. Fan, W. Shyy, T.S. Zhao, 2019, “A novel energy storage system incorporating electrically rechargeable liquid fuels as the storage medium,” Science Bulletin 64 (2019) 270-280. 77.L. Zeng, T.S. Zhao, L. Wei, H.R. Jiang, M.C. Wu, 2019, “Anion exchange membranes for aqueous acid-based redox flow batteries: Current status and challenges,” Applied Energy 233 (2019) 622-643. 78.B.W. Zhang, Y. Lei, B.F. Bai, A. Xu, T.S. Zhao, “A two-dimensional mathematical model for vanadium redox flow battery stacks incorporating nonuniform electrolyte distribution in the flow frame,” Applied Thermal Engineering 151 (2019) 495-505. 79.H.R. Jiang, Y.K. Zeng, M.C. Wu, W.Shyy, T.S. Zhao, 2019, “A uniformly distributed bismuth nanoparticle-modified carbon cloth electrode for vanadium redox flow batteries,” Applied Energy 240 (2019)226-235. 80.A. Xu, L. Shi, L. Zeng, T.S. Zhao, 2019, “First-principle investigations of nitrogen-, boron-, phosphorus-doped graphite electrodes for vanadium redox flow batteries,” Electrochimica Acta 300 (2019) 389-395. 81.B.W. Zhang, Y. Lei, B.F. Bai, T.S. Zhao 2019, “A two-dimensional model for the design of flow fields in vanadium redox flow batteries,” Int. J. Heat Mass Transf. 135 (2019) 460-469. 82.C. Xiong, T.S. Zhao, Y.X. Ren, H.R. Jiang, X.L. Zhou, 2019, “Mathematical modeling of the charging process of Li-S batteries by incorporating the size-dependent Li2S dissolution,” Electrochimica Acta 296 (2019) 954-963. 83.R.H. Zhang, T.S. Zhao, H.R. Jiang, M.C. Wu, L. Zeng, 2019, “V2O5-NiO composite nanowires: A novel and highly efficient carbon-free electrode for non-aqueous Li-air batteries operated in ambient air,” Journal of Power Sources 409 (2019)76-85. 84.H.R. Jiang, W.Shyy, Y.X. Ren, R.H. Zhang, T.S. Zhao, 2019, “A room-temperature activated graphite felt as the cost-effective, highly active and stable electrode for vanadium redox flow batteries,” Applied Energy 233-234 (2019)544-553. 85.H.R. Jiang, W.Shyy, M.C. Wu, R.H. Zhang, T.S. Zhao, 2018, “A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries,” Applied Energy 233-234 (2018)105-113. 86.X.H. Yan, X.L. Zhou, T.S. Zhao, H.R. Jiang, L, Zeng, 2018, “A highly selective proton exchange membrane with highly ordered, vertically aligned, and subnanosized 1D channels for redox flow batteries,” Journal of Power Sources 406 (2018)35-41. 87.J. Sun, L. Zeng, H.R. Jiang, C.Y.H. Chao, T.S. Zhao, 2018, “Formation of electrodes by self-assembling porous carbon fibers into bundles for vanadium redox flow batteries,” Journal of Power Sources 405 (2018)106-113. 88.L. Shi, A. Xu, T.S. Zhao, 2018, “Three-Dimensional Carbon-Honeycomb as Nanoporous Lithium and Sodium Deposition Scaffold,” J. Phys. Chem. C. 2018, 122, 37, 21262-21268 89.M.C. Wu, T.S. Zhao, R.H. Zhang, L. Wei, H.R. Jiang, 2018, “Carbonized tubular polypyrrole with a high activity for the Br2/Br- redox reaction in zinc-bromine flow batteries,” Electrochimica Acta 284 (2018) 569-576. 90.Y.X. Ren, H.R. Jiang, T.S. Zhao, L. Zeng, C. Xiong, 2018, “Remedies of capacity fading in room-temperature sodium-sulfur batteries,” Journal of Power Sources 396 (2018)304-313. 91.L. Zeng, T.S. Zhao, L. Wei, Y.K. Zeng, X.L. Zhou, 2018, “Mn3O4 nanoparticles‐decorated carbon cloths with a superior catalytic activity toward the V(II)/V(III) redox reaction in vanadium redox flow batteries,” Energy Technology 6 (2018) 1228-1236. 92.Y.X. Ren, T.S. Zhao, M. Liu, H.R. Jiang, C. Xiong, 2018, “A Li2S-Based Sacrificial Layer for Stable Operation of Lithium-Sulfur Batteries,” Energy Technology 6 (2018) 1-11. 93.H.R. Jiang, W. Shyy, L. Zeng, R.H. Zhang, T.S. Zhao, 2018, “Highly efficient and ultra-stable boron-doped graphite felt electrodes for vanadium redox flow batteries,” Journal of Materials Chemistry A, 2018, 6, 13244 – 13253. 94.A. Xu, L. Shi, T.S. Zhao, 2018, “Thermal effects on the sedimentation behavior of elliptical particles,” Int. J. Heat Mass Transf. 126 (2018) 753-764. 95.R.H. Zhang, T.S. Zhao, M.C. Wu, H.R. Jiang, L. Zeng, 2018, “Mesoporous ultrafine Ta2O5 nanoparticle with abundant oxygen vacancies as a novel and efficient catalyst for non-aqueous Li-O2 batteries,” Electrochimica Acta 271 (2018) 232-241. 96.M.C. Wu, T.S. Zhao, L. Wei, H.R. Jiang, R.H. Zhang, 2018, “Improved electrolyte for zinc-bromine flow batteries,” Journal of Power Sources 384 (2018) 233-239. 97.Y. Lei, B.W. Zhang, Z.H. Zhang, B.F. Bai, T.S. Zhao, 2018, “An improved model of ion selective adsorption in membrane and its application in vanadium redox flow batteries,” Applied Energy 215 (2018) 591-601. 98.L. Wei, M.C. Wu, T.S. Zhao, Y.K. Zeng, Y.X. Ren, 2018, “An aqueous alkaline battery consisting of inexpensive all-iron redox chemistries for large-scale energy storage,” Applied Energy 215 (2018) 98-105. 99.L. Zeng, T.S. Zhao, R.H. Zhang, J.B. Xu, 2018, “NiCo2O4 nanowires@MnOx nanoflakes supported on stainless steel mesh with superior electrocatalytic performance for anion exchange membrane water splitting,” Electrochemistry Communications 87 (2018) 66-70. 100.H.R. Jiang, W. Shyy , M. Liu , Y.X. Ren, T.S. Zhao, 2018, “Borophene and defective borophene as potential anchoring materials for lithium–sulfur batteries: a first-principles study,” Journal of Materials Chemistry A 6 (2018) 2107-2114. 101.M.C. Wu, T.S. Zhao, R.H. Zhang, H.R. Jiang, L. Wei, 2018, “A zinc bromine flow battery with improved design of cell structure and electrodes,” Energy Technology 6 (2018) 333-339. 102.R.H. Zhang, T.S. Zhao, M.C. Wu, P. Tan, H.R. Jiang, 2018, “Paramecium-Like Iron Oxide Nanotubes as a Cost-Efficient Catalyst for Nonaqueous Lithium-Oxygen Batteries,” Energy Technology 6 (2018) 263-272. 103.Z.F. Pan, L. An, T.S. Zhao, Z.K. Tang, 2018, “Advances and challenges in alkaline anion exchange membrane fuel cells,” Progress in Energy and Combustion Science 66 (2018) 141-175. 104.G. Zhao, L. Shi, J.B. Xu, X.H. Yan, T.S. Zhao, 2018, “Role of phosphorus in nitrogen, phosphorus dual-doped ordered mesoporous carbon electrocatalyst for oxygen reduction reaction in alkaline media,” Int. J. Hydrogen Energy 43 (2018) 1470-1478. 105.H.R. Jiang, M.C. Wu, Y.X. Ren, W. Shyy, T.S. Zhao, 2018, “Towards a uniform distribution of zinc in the negative electrode for zinc bromine flow batteries,” Applied Energy 213 (2018) 366-374. 106.L. Zeng, T.S. Zhao, L. Wei, 2018, “Revealing the Performance Enhancement of Oxygenated Carbonaceous Materials for Vanadium Redox Flow Batteries: Functional Groups or Specific Surface Area?,” Advanced Sustainable Systems 2018, 1700148. 107.A. Xu, L. Shi, T.S. Zhao, “Lattice Boltzmann simulation of shear viscosity of suspensions containing porous particles,” Int. J. Heat Mass Transf. 116 (2018) 969-976. 108.X.H. Yan, A. Xu, L. Zeng, P. Gao, T.S. Zhao, “A paper-based microfluidic fuel cell using hydrogen peroxide as fuel and oxidant,” Energy Technology 2018, 6 (1), 140-143. 109.A. Xu, T.S. Zhao, L. Shi, J.B. Xu, ” Lattice Boltzmann simulation of mass transfer coefficients for chemically reactive flows in porous media,” J. Heat Transf.-Trans. ASME 2018, 140 (5), 052601. 110.Z.H. Zhang, T.S. Zhao, B.F. Bai, L. Zeng, L. Wei, “A highly active biomass-derived electrode for all vanadium redox flow batteries,” Electrochimica Acta 248 (2017) 197-205. 111.X.H. Yan, P. Gao, G. Zhao, L. Shi, J.B. Xu, T.S. Zhao, “Transport of highly concentrated fuel in direct methanol fuel cells,” Applied Thermal Engineering 126 (2017) 290-295. 112.R.H. Zhang, T.S. Zhao, P. Tan, M.C. Wu, H.R. Jiang, “Ruthenium dioxide-decorated carbonized tubular polypyrrole as a bifunctional catalyst for non-aqueous lithium-oxygen batteries,” Electrochimica Acta 257 (2017) 281-289. 113.M. Liu, Y.X. Ren, H.R. Jiang, C. Luo, F.Y. Kang, T.S. Zhao, “An efficient Li2S-based lithium-ion sulfur battery realized by a bifunctional electrolyte additive,” Nano Energy 40 (2017) 240-247. 114.P. Tan, H.R. Jiang, X.B. Zhu, L. An, C.Y. Jung, M.C. Wu, L. Shi, W. Shyy, T.S. Zhao, “Advances and challenges in lithium-air batteries,” Applied Energy 204 (2017) 780-806. 115.X. Gao, T.S. Zhao, Z.G. Li, “Fluid breakup in carbon nanotubes: An explanation of ultrafast ion transport,” Physics of Fluids 29 (2017) 092003. 116.L. Shi, A. Xu, G.H. Chen, T.S. Zhao,”Theoretical understanding of mechanisms of proton exchange membranes made of 2D crystals with ultrahigh selectivity,” Journal of Physical Chemistry Letters 8 (2017) 4354-4361. 117.H.R. Jiang, W. Shyy, M.C. Wu, L. Wei, T.S. Zhao, “Highly active, bi-functional and metal-free B4C-nanoparticle-modified graphite felt electrodes for vanadium redox flow batteries,” Journal of Power Sources 365 (2017) 34-42. 118.Y.X. Ren, T.S. Zhao, M. Liu, Y.K. Zeng, H.R. Jiang, 2017, “A self-cleaning Li-S battery enabled by a bifunctional redox mediator,” Journal of Power Sources 361 (2017) 203-210. 119.Y.X. Ren, T.S. Zhao, M. Liu, L. Wei, R.H. Zhang, 2017, “High-performance nitrogen-doped titania nanowire decorated carbon cloth electrode for lithium-polysulfide batteries,” Electrochimica Acta 242 (2017) 137-145. 120.A. Xu, W. Shyy, T.S. Zhao, 2017, “Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries,” Acta Mechanica Sinica 33 (2017) 555-574. 121.H.R. Jiang, T.S. Zhao, Y.X. Ren, R.H. Zhang, M.C. Wu, 2017, “Ab initio prediction and characterization of phosphorene-like SiS and SiSe as anode materials for sodium-ion batteries,” Science Bulletin 62 (2017) 572-578. 122.M.C. Wu, T.S. Zhao, H.R. Jiang, Y.K. Zeng, Y.X. Ren, 2017, “High-performance zinc bromine flow battery via improved design of electrolyte and electrode,” Journal of Power Sources 355 (2017) 62-68. 123.Y.K. Zeng, T.S. Zhao, X.L. Zhou, J. Zou, Y.X. Ren, 2017, “A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of iron-chromium redox flow batteries,” Journal of Power Sources 352 (2017) 77-82. 124.A. Xu, L. Shi, T.S. Zhao, 2017, “Accelerated lattice Boltzmann simulation using GPU and OpenACC with data management,” Int. J. Heat Mass Transf. 109 (2017) 577-588. 125.Y.X. Ren, T.S. Zhao, H.R. Jiang, M.C. Wu, M. Liu, 2017, “A stabilized high-energy Li-polyiodide semi-liquid battery with a dually-protected Li anode,” Journal of Power Sources 347 (2017) 136-144. 126.Y.K. Zeng, T.S. Zhao, X.L. Zhou, L. Wei, Y.X. Ren, 2017, “A novel iron-lead redox flow battery for large-scale energy storage,” Journal of Power Sources 346 (2017) 97-102. 127.L. Shi, T.S. Zhao, 2017, “Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries,”Journal of Materials Chemistry A 5 (2017) 3735-3758 128.L. Wei, T.S. Zhao, Q. Xu, X.L. Zhou, Z.H. Zhang, 2017, “In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries,” Applied Energy 190 (2017) 1112-1118. 129.M. Liu, Y.X. Ren, D. Zhou, H.R. Jiang, F.Y. Kang, T.S. Zhao, 2017, “A Lithium/Polysulfide Battery with Dual-Working Mode Enabled by Liquid Fuel and Acrylate-Based Gel Polymer Electrolyte,” ACS Appl. Mater. Interfaces 9 (2017) 2526-2534. 130.L. Shi, A. Xu, T.S. Zhao, 2017, “First-principle Investigations of the Working Mechanism of 2D h-BN as an Interfacial Layer for the Anode of Lithium Metal Batteries,” ACS Appl. Mater. Interfaces 9 (2017) 1987-1994. 131.H.R. Jiang, W. Shyy, M. Liu, L. Wei, M. C. Wu, T. S. Zhao, 2017, “Boron phosphide monolayer as a potential anode material for alkali metal-based batteries,”Journal of Materials Chemistry A 5 (2017) 672-679. 132.Y.X. Ren, M. Liu, T.S. Zhao, L. Zeng, M.C. Wu, 2017, “An aprotic lithium/polyiodide semi-liquid battery with an ionic shield,” Journal of Power Sources 342 (2017) 9-16. 133.L. An, T.S. Zhao, 2017, “Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production,” Journal of Power Sources 341 (2017) 199-211. 134.L. Wei, T.S. Zhao, L. Zeng, Y.K. Zeng, H.R. Jiang, 2017, “Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries,” Journal of Power Sources 341 (2017) 318-326. 135.Y.X. Ren, T.S. Zhao, P. Tan, Z.H. Wei, X.L. Zhou, 2017, “Modeling of an aprotic Li-O2 battery incorporating multiple-step reactions,” Applied Energy 187 (2017) 706-716. 136.X.L. Zhou, T.S. Zhao, L. An, Y.K. Zeng, L. Wei, 2017, “Critical transport issues for improving the performance of aqueous redox flow batteries,” Journal of Power Sources 339 (2017) 1-12. 137.G. Zhao, T.S. Zhao, J.B. Xu, L. Zeng, X.H. Yan, 2017, “Impact of pore size of ordered mesoporous carbon FDU-15-supported platinum catalysts on oxygen reduction reaction,” Int. J. Hydrogen Energy 42 (2017) 3325-3334. 138.X.L. Zhou, T.S. Zhao, Y.K. Zeng, L. An, L. Wei, 2016, “A highly permeable and enhanced surface area carbon-cloth electrode for vanadium redox flow batteries,” Journal of Power Sources 329 (2016) 247-254. 139.M.C. Wu, T.S. Zhao, H.R. Jiang, L. Wei, Z.H. Zhang, 2016, “Facile preparation of high-performance MnO2/KB air cathode for Zn-air batteries,” Electrochimica Acta 222 (2016) 1438-1444. 140.Y.S. Li, T.S. Zhao, 2016, “A passive anion-exchange membrane direct ethanol fuel cell stack and its applications,” Int. J. Hydrogen Energy 41 (2016) 20336-20342. 141.L. Shi, T.S. Zhao, A. Xu, J.B. Xu, 2016, “Ab initio prediction of a silicene and graphene heterostructure as an anode material for Li- and Na-ion batteries,”Journal of Materials Chemistry A 4 (2016) 16377-16382. 142.Y.X. Ren, T.S. Zhao, M. Liu, P. Tan, Y.K. Zeng, 2016, “Modeling of lithium-sulfur batteries incorporating the effect of Li2S precipitation,” Journal of Power Sources 336 (2016) 115-125. 143.L. Zeng, T.S. Zhao, L. Wei, Y.K. Zeng, Z.H. Zhang, 2016, “Highly stable pyridinium-functionalized cross-linked anion exchange membranes for all vanadium redox flow batteries,” Journal of Power Sources 331 (2016) 452-461. 144.H.R. Jiang, T.S. Zhao, M. Liu, M.C. Wu, X.H. Yan, 2016, “Two-dimensional SiS as a potential anode material for lithium-based batteries: A first-principles study,” Journal of Power Sources 331 (2016) 391-399. 145.C.Y. Jung, T.S. Zhao, L. Zeng, P. Tan, 2016, “Vertically aligned carbon nanotube-ruthenium dioxide core-shell cathode for non-aqueous lithium-oxygen batteries,” Journal of Power Sources 331 (2016) 82-90. 146.A. Xu, T.S. Zhao, L. Shi, X.H. Yan, 2016, “Three-dimensional lattice Boltzmann simulation of suspensions containing both micro- and nanoparticles,” Int. J. Heat Fluid Flow 62 (2016) 560-567. 147.L. Shi, T.S. Zhao, A. Xu, Z.H. Wei, 2016, “Unraveling the Catalytic Mechanism of Rutile RuO2 for the Oxygen Reduction Reaction and Oxygen Evolution Reaction in Li-O2 Batteries,” ACS Catalysis 6 (2016) 6285-6293. 148.Y.K. Zeng, T.S. Zhao, X.L. Zhou, L. Wei, H.R. Jiang, 2016, “A low-cost iron-cadmium redox flow battery for large-scale energy storage,” Journal of Power Sources 330 (2016) 55-60. 149.P. Tan, W. Shyy, T.S. Zhao, R.H. Zhang, X.B. Zhu, 2016, “Effects of moist air on the cycling performance of non-aqueous lithium-air batteries,” Applied Energy 182 (2016) 569-575. 150.Y.K. Zeng, T.S. Zhao, X.L. Zhou, L. Zeng, L. Wei, 2016, “The effects of design parameters on the charge-discharge performance of iron-chromium redox flow batteries,” Applied Energy 182 (2016) 204-209. 151.M. Liu, D. Zhou, H.R. Jiang, Y.X. Ren, F.Y. Kang, T.S. Zhao, 2016, “A highly-safe lithium-ion sulfur polymer battery with SnO2 anode and acrylate-based gel polymer electrolyte,” Nano Energy 28 (2016) 97-105. 152.H.R. Jiang, P. Tan, M. Liu, Y.K. Zeng, T.S. Zhao, 2016, “Unraveling the Positive Roles of Point Defects on Carbon Surfaces in Nonaqueous Lithium–Oxygen Batteries,” J. Phys. Chem. C. 120 (2016) 18394-18402. 153.M. Liu, H.R. Jiang, Y.X. Ren, D. Zhou, F.Y. Kang, T.S. Zhao, 2016, “In-situ Fabrication of a Freestanding Acrylate-based Hierarchical Electrolyte for Lithium-sulfur Batteries,” Electrochimica Acta 213 (2016) 871-878. 154.X.L. Zhou, T.S. Zhao, L. An, Y.K. Zeng, X.B. Zhu, 2016, “Performance of a vanadium redox flow battery with a VANADion membrane,” Applied Energy 180 (2016) 353-359. 155.L. Wei, T.S. Zhao, L. Zeng, X.L. Zhou, Y.K. Zeng, 2016, “Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries,” Applied Energy 180 (2016) 386-391. 156.L. Wei, T.S. Zhao, L. Zeng, X.L. Zhou, Y.K. Zeng, 2016, “Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries,” Applied Energy 180 (2016) 386-391. 157.L. Zeng, T.S. Zhao, L. Wei, Y.K. Zeng, Z.H. Zhang, 2016, “Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries,” Journal of Power Sources 327 (2016) 374- 158.Y.K. Zeng, X.L. Zhou, L. Zeng, X.H. Yan, T.S. Zhao, 2016, “Performance enhancement of iron-chromium redox flow batteries by employing interdigitated flow fields,” Journal of Power Sources 327 (2016) 258-264. 159.X.L. Zhou, T.S. Zhao, L. An, Y.K. Zeng, L. Wei, 2016, “Modeling of ion transport through a porous separator in vanadium redox flow batteries,” Journal of Power Sources 327 (2016) 67-76. 160.X.H. Yan, H.R. Jiang, G. Zhao, L. Zeng, T.S. Zhao, 2016, “Preparations of an inorganic-framework proton exchange nanochannel membrane,” Journal of Power Sources 326 (2016) 466-475. 161.L. Shi, T.S. Zhao, A. Xu, J.B. Xu, 2016, “Ab initio prediction of borophene as an extraordinary anode material exhibiting ultrafast directional sodium diffusion for sodium-based batteries,” Science Bulletin 61 (2016) 1138-1144. 162.P. Tan, W. Shyy, M.C. Wu, Y.Y. Huang, T.S. Zhao, 2016, “Carbon electrode with NiO and RuO2 nanoparticles improves the cycling life of non-aqueous lithium-oxygen batteries,” Journal of Power Sources 326 (2016) 303-312. 163.M.C. Wu, T.S. Zhao, P. Tan, H.R. Jiang, X.B. Zhu, 2016, “Cost-effective carbon supported Fe2O3 nanoparticles as an efficient catalyst for non-aqueous lithium-oxygen batteries,” Electrochimica Acta 211 (2016) 545–551. 164.X.B. Zhu, T.S. Zhao, P. Tan, Z.H. Wei, M.C. Wu, 2016, “A high-performance solid-state lithium-oxygen battery with a ceramic-carbon nanostructured electrode,” Nano Energy 26 (2016) 565-576. 165.X.L. Zhou, Y.K. Zeng, X.B. Zhu, L. Wei, T.S. Zhao, 2016, “A high-performance dual-scale porous electrode for vanadium redox flow batteries,” Journal of Power Sources 325 (2016) 329-336. 166.H.R. Jiang, M.C. Wu, X.L. Zhou, X.H. Yan, T.S. Zhao, 2016, “Computational insights into the effect of carbon structures at the atomic level for non-aqueous sodium-oxygen batteries,” Journal of Power Sources 325 (2016) 91-97. 167.Y.K. Zeng, X.L. Zhou, L. An, L. Wei, T.S. Zhao, 2016, “A high-performance flow-field structured iron-chromium redox flow battery,” Journal of Power Sources 324 (2016) 738-744. 168.G. Zhao, T.S. Zhao, X.H. Yan, L. Zeng, J.B. Xu, 2016, “Ordered Mesoporous Carbon/Titanium Carbide Composites as Support Materials for Platinum Catalysts,” Energy Technology 4 (2016) 1064-1070. 169.L. Wei, T.S. Zhao, L. Zeng, X.L. Zhou, Y.K. Zeng, 2016, “Titanium Carbide Nanoparticle-Decorated Electrode Enables Significant Enhancement in Performance of All-Vanadium Redox Flow Batteries,” Energy Technology 4 (2016) 990-996. 170.L. Wei, T.S. Zhao, G. Zhao, L. An, L. Zeng, 2016, “A high-performance carbon nanoparticle-decorated graphite felt electrode for vanadium redox flow batteries,” Applied Energy 176 (2016) 74-79. 171.H.R. Jiang, Z.H. Lu, M.C. Wu, F. Ciucci, T.S. Zhao, 2016, “Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries,” Nano Energy 23 (2016) 97-104. 172.H.R. Jiang, T.S. Zhao, L. Shi, P. Tan, L. An, 2016, “First-Principles Study of Nitrogen-, Boron-Doped Graphene and Co-Doped Graphene as the Potential Catalysts in Nonaqueous Li–O2 Batteries,” J. Phys. Chem. C 120 (2016) 6612-6618. 173.L. Shi, A. Xu, T.S. Zhao, 2016, “RuO2 Monolayer: A Promising Bifunctional Catalytic Material for Nonaqueous Lithium–Oxygen Batteries,” J. Phys. Chem. C 120 (2016) 6356-6362. 174.P. Tan, Z.H. Wei, W. Shyy, T.S. Zhao, X.B. Zhu, 2016, “A nano-structured RuO2/NiO cathode enables the operation of non-aqueous lithium–air batteries in ambient air,” Energy & Environmental Science, 2016, 9, 1783-1793. 175.M. Liu, D. Zhou, Y.B. He, Y.Z. Fu, X.Y. Qin, C. Miao, H.D. Du, B.H. Li, Q.H. Yang, Z.Q. Lin, T.S. Zhao, F.Y. Kang, 2016, “Novel gel polymer electrolyte for high-performance lithium–sulfur batteries,” Nano Energy 22 (2016) 278-289. 176.X.H. Yan, T.S. Zhao, L. An, G. Zhao, L. Shi, 2016, “A direct methanol–hydrogen peroxide fuel cell with a Prussian Blue cathode,” Int. J. Hydrogen Energy 41 (2016) 5135-5140. 177.X.H. Yan, R.Z. Wu, J.B. Xu, Z.T. Luo, T.S. Zhao, 2016, “A monolayer graphene – Nafion sandwich membrane for direct methanol fuel cells,” Journal of Power Sources 311 (2016) 188-194. 178.Y.Y. Huang, T.S. Zhao, L. Zeng, P. Tan, J.B. Xu, 2016, “A facile approach for preparation of highly dispersed platinum-copper/carbon nanocatalyst toward formic acid electro-oxidation,” Electrochimica Acta 190 (2016) 956–963. 179.P. Tan, L. Shi, W. Shyy, T.S. Zhao, 2016, “Morphology of the discharge product in non-aqueous lithium-oxygen batteries: furrowed toroid particles correspond to a lower charge voltage,” Energy Technology 4 (2016) 393-400. 180.Z.H. Wei, T.S. Zhao, X.B. Zhu, P. Tan, 2016, “MnO2-x nanosheets on stainless steel felt as a carbon- and binder-free cathode for non-aqueous lithium-oxygen batteries,” Journal of Power Sources 306 (2016) 724-732. 181.Y.Y. Huang, T.S. Zhao, G. Zhao, X.H. Yan, K. Xu, 2016, “Manganese-tuned chemical etching of a platinum–copper nanocatalyst with platinum-rich surfaces,” Journal of Power Sources 304 (2016) 74-80. 182.L. Zeng, T.S. Zhao, 2016, “An effective strategy to increase hydroxide-ion conductivity through microphase separation induced by hydrophobic-side chains,” Journal of Power Sources 303 (2016) 354-362. 183.X.H. Yan, T.S. Zhao, L. An, G. Zhao, L. Zeng, 2015, “A novel cathode architecture with a thin reaction layer alleviates mixed potentials and catalyst poisoning in direct methanol fuel cells,” Int. J. Hydrogen Energy 40 (2015) 16540–16546. 184.X.B. Zhu, T. S. Zhao, Z. H. Wei, P. Tan, L. An, 2015, “A high-rate and long cycle life solid-state lithium-air battery,” Energy & Environmental Science, 2015, 8, 3745 – 3754. 185.Y.K. Zeng, T.S. Zhao, L. An, X.L. Zhou, L. Wei, 2015, “A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage,” Journal of Power Sources 300 (2015) 438-443. 186.L. Shi, A. Xu, T.S. Zhao, 2015, “Formation of Li3O4 nano particles in the discharge products of non-aqueous lithium-oxygen batteries leads to lower charge overvoltage,” Phys. Chem. Chem. Phys., 2015, 17, 29859 – 29866. 187.Y. Lei, B.W. Zhang, B.F. Bai, T.S. Zhao, 2015, “A transient electrochemical model incorporating the Donnan effect for all-vanadium redox flow batteries,” Journal of Power Sources 299 (2015) 202-211. 188.A. Xu, T.S. Zhao, L. An, L. Shi, 2015, “A three-dimensional pseudo-potential-based lattice Boltzmann model for multiphase flows with large density ratio and variable surface tension,” Int. J. Heat Fluid Flow 56 (2015) 261-271. 189.X.L. Zhou, T.S. Zhao, L. An, Y.K. Zeng, X.H. Yan, 2015, “A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility,” Applied Energy 158 (2015) 157-166. 190.P. Tan, W. Shyy, T.S. Zhao, X.B. Zhu, Z.H. Wei, 2015, “A RuO2 nanoparticle-decorated buckypaper cathode for non-aqueous lithium-oxygen batteries,” J. Mater. Chem. A., 2015, 3, 19042-19049. 191.Z.H. Wei, T.S. Zhao, X.B. Zhu, L. An, P. Tan, 2015, “Integrated porous cathode made of pure perovskite lanthanum nickel oxide for nonaqueous lithium–oxygen batteries,” Energy Technology 3 (2015) 1093-1100. 192.X. Gao, T.S. Zhao, Z.G. Li, 2015, “Controlling flow direction in nanochannels by electric field strength,” Physical Review E 92, 023017 (2015). 193.X.B. Zhu, T.S. Zhao, Z.H. Wei, P. Tan, G. Zhao, 2015, “A novel solid-state Li-O2 battery with an integrated electrolyte and cathode structure,” Energy & Environmental Science, 2015, 8, 2782-2790. 194.C.Y. Jung, T.S. Zhao, L. An, L. Zeng, Z.H. Wei, 2015, “Screen printed cathode for non-aqueous lithiumeoxygen batteries,” Journal of Power Sources 297 (2015) 174-180. 195.L. Zeng, T.S. Zhao, L. An, G. Zhao, X.H. Yan, 2015, “A high-performance sandwiched-porous polybenzimidazole membrane with enhanced alkaline retention for anion exchange membrane fuel cells,” Energy & Environmental Science, 2015, 8, 2768-2774. 196.L. Zeng, T.S. Zhao, L. An, G. Zhao, X.H. Yan, 2015, “Physicochemical properties of alkaline doped polybenzimidazole membranes for anion exchange membrane fuel cells,” Journal of Membrane Science 493 (2015) 340-348. 197.C. Zhang, T.S. Zhao, Q. Xu, L. An, G. Zhao, 2015, “Effects of operating temperature on the performance of vanadium redox flow batteries,” Applied Energy 155 (2015) 349–353. 198.X.H. Yan, T.S. Zhao, G. Zhao, L. An, X.L. Zhou, 2015, “A hydrophilic-hydrophobic dual-layer microporous layer enabling the improved water management of direct methanol fuel cells operating with neat methanol,” Journal of Power Sources 294 (2015) 232-238. 199.L. An, T.S. Zhao, Y.S. Li, 2015, “Carbon-neutral sustainable energy technology: Direct ethanol fuel cells,” Renewable and Sustainable Energy Reviews 50 (2015) 1462-1468. 200.P. Tan, W. Shyy, T.S. Zhao, 2015, “What is the ideal distribution of electrolyte inside cathode pores of non-aqueous lithium-air batteries?,” Science Bulletin 60 (2015) 975-976. 201.Q. Xu, T.S. Zhao, 2015, “Fundamental models for flow batteries,” Progress in Energy and Combustion Science 49 (2015) 40–58. 202.G. Zhao, T.S. Zhao, X.H. Yan, L. Zeng, 2015, “A High Catalyst-Utilization Electrode for Direct Methanol Fuel Cells,” Electrochimica Acta 164 (2015) 337–343. 203.X.G. Yang, Q. Ye, P. Cheng, T.S. Zhao, 2015, “Effects of the electric field on ion crossover in vanadium redox flow batteries,” Applied Energy 145 (2015) 306–319. 204.Q. Xu, T.S. Zhao, L. Wei, C. Zhang, X.L. Zhou, 2015, “Electrochemical characteristics and transport properties of Fe(II)/Fe(III) redox couple in a non-aqueous reline deep eutectic solvent,” Electrochimica Acta 154 (2015) 462–467. 205.L. Shi, T.S. Zhao, 2015, “Why the charge overpotential in non-aqueous Li–O2 batteries is so high and exhibits different rising trends?,” Science Bulletin 60 (2015) 281-282. 206.L. An, T.S. Zhao, X.H. Yan, X.L. Zhou, P. Tan, 2015, “The dual role of hydrogen peroxide in fuel cells,” Science Bulletin 60 (2015) 55-64. 207.P. Tan, W. Shyy, T.S. Zhao, Z.H. Wei, L. An, 2015, “Discharge product morphology versus operating temperature in non-aqueous lithium-air batteries,” Journal of Power Sources 278 (2015) 133-140. 208.X.L. Zhou, T.S. Zhao, L. An, L. Wei, C. Zhang, 2015, “The use of polybenzimidazole membranes in vanadium redox flow batteries leading to increased coulombic efficiency and cycling performance,” Electrochimica Acta 153 (2015) 492–498. 209.L. Zeng, T.S. Zhao, L. An, 2015, “A high-performance supportless silver nanowire catalyst for anion exchange membrane fuel cells,” J. Mater. Chem. A, 3 (2015) 1410-1416. 210.L. An, T.S. Zhao, X.L. Zhou, X.H. Yan, C.Y. Jung, 2015, “A low-cost, high-performance zinc–hydrogen peroxide fuel cell,” Journal of Power Sources 275 (2015) 831-834. 211.L. Zeng, T.S. Zhao, 2015, “Integrated inorganic membrane electrode assembly with layered double hydroxides as ionic conductors for anion exchange membrane water electrolysis,” Nano Energy 11 (2015)110–118. 212.L. Zeng, T.S. Zhao, L. An, G. Zhao, X.H. Yan, C.Y. Jung, 2015, “Graphene-supported platinum catalyst prepared with ionomer as surfactant for anion exchange membrane fuel cells,” Journal of Power Sources 275 (2015) 506-515. 213.X.H. Yan, T.S. Zhao, L. An, G. Zhao, L. Zeng, 2015, “A crack-free and super-hydrophobic cathode micro-porous layer for direct methanol fuel cells,” Applied Energy 138 (2015) 331–336. 214.C.Y. Jung, T.S. Zhao, L. An, 2015, “Modeling of lithium-oxygen batteries with the discharge product treated as a discontinuous deposit layer,” Journal of Power Sources 273 (2015) 440-447. 215.L. An, T.S. Zhao, X.L. Zhou, L. Wei, X.H. Yan, 2014, “A high-performance ethanol-hydrogen peroxide fuel cell,” RSC Advances, 4 (2014) 65031-65034. 216.P. Tan, W. Shyy, Z.H. Wei, L. An, T.S. Zhao, 2014, “A carbon powder-nanotube composite cathode for non-aqueous lithium-air batteries,” Electrochimica Acta 147 (2014) 1–8. 217.L. An, T.S. Zhao, Z.H. Chai, P. Tan, L. Zeng, 2014, “Mathematical modeling of an anion-exchange membrane water electrolyzer for hydrogen production,” Int. J. Hydrogen Energy 39 (2014) 19869-19876. 218.M.C. Wu, M.Y. Liu, G.F. Long, K. Wan, Z.X. Liang, T.S. Zhao, 2014, “A novel high-energy-density positive electrolyte with multiple redox couples for redox flow batteries,” Applied Energy 136 (2014) 576-581. 219.Q. Xu, T.S. Zhao, C. Zhang, 2014, “Performance of a vanadium redox flow battery with and without flow fields,” Electrochimica Acta142 (2014) 61–67. 220.Q. Xu, T.S. Zhao, C. Zhang, 2014, “Effects of SOC-dependent electrolyte viscosity on performance of vanadium redox flow batteries,” Applied Energy 130 (2014) 139–147. 221.Z.H. Wei, P. Tan, L. An, T.S. Zhao, 2014, “A non-carbon cathode electrode for lithium-oxygen batteries,” Applied Energy 130 (2014) 134–138. 222.P. Tan, W. Shyy, L. An, Z.H. Wei, and T.S. Zhao, 2014 “A gradient porous cathode for non-aqueous lithium-air batteries leading to a high capacity,” Electrochemistry Communications 46 (2014) 111–114. 223.X.H. Yan, T.S. Zhao, L. An, G. Zhao, L. Zeng, “A micro-porous current collector enabling passive direct methanol fuel cells to operate with highly concentrated fuel,” Electrochimica Acta 139 (2014) 7–12. 224.Z.H. Chai, T.S. Zhao, 2014, “Nonequilibrium scheme for computing the flux of the convection-diffusion equation in the framework of the lattice Boltzmann method,” Physical Review E 90, 013305 (2014). 225.Q.X. Wu, L. An, X.H. Yan, T.S. Zhao, “Effects of design parameters on the performance of passive direct methanol fuel cells fed with concentrated fuel,” Electrochimica Acta 133 (2014) 8–15. 226.L. Zeng, Z.K. Tang, T.S. Zhao, 2014, “A high-performance alkaline exchange membrane direct formate fuel cell,” Applied Energy 115 (2014) 405–410. 227.L. An, T.S. Zhao, L. Zeng, X.H. Yan, 2014, “Performance of an alkaline direct ethanol fuel cell with hydrogen peroxide as oxidant,” Int. J. Hydrogen Energy 39 (2014) 2320-2324. 228.L. An, T.S. Zhao, Z.H. Chai, L. Zeng, P. Tan, 2014, “Modeling of the mixed potential in hydrogen peroxide-based fuel cells,” Int. J. Hydrogen Energy 39 (2014) 7407-7416. 229.X. Gao, T.S. Zhao, Z.G. Li, 2014, “Effects of ions on the diffusion coefficient of water in carbon nanotubes,” J. Appl. Phys. 116(5) (2014) 054311. 230.L. An, Z.H. Chai, L. Zeng, P. Tan, T.S. Zhao, 2013, “Mathematical modeling of alkaline direct ethanol fuel cells,” Int. J. Hydrogen Energy 38 (2013) 14067 -14075. 231.P. Tan, Z.H. Wei, W. Shyy, T.S. Zhao, 2013, “Prediction of the theoretical capacity of non-aqueous lithium-air batteries,” Applied Energy 109 (2013) 275–282. 232.P.K. Leung, Q. Xu, T.S. Zhao, L. Zeng, C. Zhang, 2013, “Preparation of silica nanocomposite anion-exchange membranes with low vanadium-ion crossover for vanadium redox flow batteries,” Electrochimica Acta 105 (2013) 584-592. 233.Q. Xu, T.S. Zhao, 2013, “Determinations of mass-transport properties of vanadium ions through the porous electrode of vanadium redox flow batteries,” Phys. Chem. Chem. Phys., 2013, 15 (26), 10841-10848. 234.Z.H. Chai, T.S. Zhao, 2013, “Lattice Boltzmann model for the convection-diffusion equation,” Physical Review E 87, 063309 (2013). 235.L. An, L. Zeng, T.S. Zhao, 2013, “An alkaline direct ethylene glycol fuel cell with an alkali-doped polybenzimidazole membrane,” Int. J. Hydrogen Energy 38(2013) 10602-10606. 236.L. Zeng, T.S. Zhao, 2013, “High-Performance Alkaline Ionomer for Alkaline Exchange Membrane Fuel Cells,” Electrochemistry Communications 34 (2013) 278–281. 237.L. An, T.S. Zhao, L. Zeng, 2013, “Agar chemical hydrogel electrode binder for fuel-electrolyte-fed fuel cells,” Applied Energy109 (2013) 67–71. 238.J.B. Xu, T.S. Zhao, 2013, “Mesoporous carbon with uniquely combined electrochemical and mass transport characteristics for polymer electrolyte membrane fuel cells,” RSC Adv., 2013, 3 (1), 16 – 24. 239.S.Y. Shen, T.S. Zhao, 2013, “One-step polyol synthesis of Rh-on-Pd bimetallic nanodendrites and their electrocatalytic properties for ethanol oxidation in alkaline media,” J. Mater. Chem. A, 2013, 1, 906-912. 240.Q.X. Wu, T.S. Zhao, R. Chen, L. An, 2013, “A sandwich structured membrane for direct methanol fuel cells operating with neat methanol,” Applied Energy 106 (2013) 301–306. 241.Q. Xu, T.S. Zhao, P.K. Leung, 2013, “Numerical investigations of flow field designs for vanadium redox flow batteries,” Applied Energy 105 (2013) 47-56. 242.H. Zhao, T.S. Zhao, 2013, “Highly active carbon nanotube-supported Pd electrocatalyst for oxidation of formic acid prepared by etching copper template method,” Int. J. Hydrogen Energy 38 (2013) 1391-1396. 243.H. Zhao, T.S. Zhao, 2013, “Graphene sheets fabricated from disposable paper cups as a catalyst support material for fuel cells,” J. Mater. Chem. A, 2013, 1 (2), 183 – 187. 244.Y.L. He, Z. Miao, T.S. Zhao, W.W. Yang, 2012, “Numerical study of the effect of the GDL structure on water crossover in a direct methanol fuel cell,” Int. J. Hydrogen Energy 37 (2012) 4422-4438. 245.H. Zhao, H.G. Fu, T.S. Zhao, L. Wang, T.X. Tan, 2012, “Fabrication of small-sized silver NPs/graphene sheets for high-quality surface-enhanced Raman scattering,” Journal of Colloid and Interface Science 375 (2012) 30-34. 246.X.Y. Li, W.W. Yang, Y.L. He, T.S. Zhao, Z.G. Qu, 2012, “Effect of anode micro-porous layer on species crossover through the membrane of the liquid-feed direct methanol fuel cells,” Applied Thermal Engineering 48 (2012) 392-401. 247.Z.H. Chai, T.S. Zhao, 2012, “Effect of the forcing term in the multiple-relaxation-time lattice Boltzmann equation on the shear stress or the strain rate tensor,” Physical Review E 86, 016705 (2012). 248.L. Zeng, T.S. Zhao, Y.S. Li, 2012, “Synthesis and characterization of crosslinked poly (vinyl alcohol)/layered double hydroxide composite polymer membranes for alkaline direct ethanol fuel cells,” Int. J. Hydrogen Energy 37 (2012) 18425-18432. 249.Y.S. Li, T.S. Zhao, 2012, “Ultra-low loading catalyst cathode electrode for anion-exchange membrane fuel cells,” Int. J. Hydrogen Energy 37 (2012) 15334-15338. 250.J.B. Xu, T.S. Zhao, L. Zeng, 2012, “Covalent hybrid of hemin and mesoporous carbon as a high performance electrocatalyst for oxygen reduction,” Int. J. Hydrogen Energy 37 (2012) 15976-15982. 251.P.K. Leung, Q. Xu, T.S. Zhao, 2012, “High-potential zinc-lead dioxide rechargeable cells,” Electrochimica Acta 79 (2012) 117-125. 252.L. An, T.S. Zhao, Q.X. Wu, L. Zeng, 2012, “Comparison of different types of membrane in alkaline direct ethanol fuel cells,” Int. J. Hydrogen Energy 37 (2012) 14536-14542. 253.Z.H. Chai, T.S. Zhao, 2012, “A pseudopotential-based multiple-relaxation-time lattice Boltzmann model for multicomponent/multiphase flows,” Acta Mechanica Sinica (2012) 28(4):983-992. 254.L. An, T.S. Zhao, Y.S. Li, Q.X. Wu, 2012, “Charge carriers in alkaline direct oxidation fuel cells,” Energy & Environmental Science 2012, 5, 7536-7538. 255.J.B. Xu, P. Gao, T.S. Zhao, 2012, “Non-precious CO3O4 nano-rod electrocatalyst for oxygen reduction reaction in anion-exchange membrane fuel cells,” Energy & Environmental Science 2012,5,5333-5339. 256.Y.S. Li, T.S. Zhao, 2012, “Understanding the performance degradation of anion-exchange membrane direct ethanol fuel cells,” Int. J. Hydrogen Energy 37 (2012) 4413-4421. 257.Q.X. Wu, S.Y. Shen, Y.L. He, T.S. Zhao, 2012, “Effect of water concentration in the anode catalyst layer on the performance of direct methanol fuel cells operating with neat methanol,” Int. J. Hydrogen Energy 37 (2012) 5958-5968. 258.S.Y. Shen, T.S. Zhao, Q.X. Wu, 2012, “Product analysis of the ethanol oxidation reaction on palladium-based catalysts in an anion-exchange membrane fuel cell environment,” Int. J. Hydrogen Energy 37 (2012) 575-582. 259.X.Z. Du, T.S. Zhao, J. Luo, 2011, “Continuous micro liquid delivery by evaporation on a gradient-capillary microstructure surface,” J. Micromech. Microeng. 21 (2011) 095004. 260.L. An, T.S. Zhao, 2011, “An alkaline direct ethanol fuel cell with a cation exchange membrane,” Energy & Environmental Science 2011, 4, 2213-2217. 261.L. An, T.S. Zhao, J.B. Xu, 2011, “A bi-functional cathode structure for alkaline-acid direct ethanol fuel cells,” Int. J. Hydrogen Energy 36 (2011) 13089-13095. 262.L. An, T.S. Zhao, 2011, “Performance of an alkaline-acid direct ethanol fuel cell,” Int. J. Hydrogen Energy 36 (2011) 9994-9999. 263.Q.X. Wu, Y.L. He, T.S. Zhao, 2011, “Recent advances in understanding of mass transfer phenomena in direct methanol fuel cell operating with concentrated fuel,” Frontiers in Heat and Mass Transfer, 2, 032001 (2011). 264.L. An, T.S. Zhao, R. Chen, Q.X. Wu, 2011, “A novel direct ethanol fuel cell with high power density,” Journal of Power Sources 196 (2011) 6219–6222. 265.W.W. Yang, T.S. Zhao, Q.X. Wu, 2011, “Modeling of a passive DMFC operating with neat methanol,” Int. J. Hydrogen Energy 36 (2011) 6899-6913. 266.Y.S. Li, T.S. Zhao, 2011, “A high-performance integrated electrode for anion-exchange membrane direct ethanol fuel cells,” Int. J. Hydrogen Energy 36 (2011) 7707-7713. 267.Q.X. Wu, T.S. Zhao, 2011, “Characteristics of water transport through the membrane in direct methanol fuel cells operating with neat methanol,” Int. J. Hydrogen Energy 36 ( 2011) 5644-5654. 268.S.Y. Shen, T.S. Zhao, J.B. Xu, Y.S. Li, 2011, “High performance of carbon supported ternary PdIrNi catalyst for ethanol electro-oxidation in anion-exchange membrane direct ethanol fuel cells,” Energy & Environmental Science 2011, 4, 1428-1433. 269.Z. Miao, Y.L. He, T.S. Zhao, W.Q. Tao, 2011, “Numerical investigation of heat transport in a direct methanol fuel cell with anisotropic gas diffusion layers,” Frontiers in Heat and Mass Transfer 2, 013001 (2011). 270.Q. Xu, T.S. Zhao, W.W. Yang, R. Chen 2011, “A flow field enabling operating direct methanol fuel cells with highly concentrated methanol;” Int. J. Hydrogen Energy 36(2011) 830-838. 271.Q.X. Wu, T.S. Zhao, W.W. Yang, 2011, “Effect of the cathode gas diffusion layer on the water transport behavior and the performance of passive direct methanol fuel cells operating with neat methanol,” Int. J. Heat Mass Transf. 54 (2011) 1132-1143. 272.Y.S. Li, T.S. Zhao, J.B. Xu, S.Y. Shen, W.W. Yang, 2011, “Effect of the cathode micro-porous layer on performance of anion-exchange membrane direct ethanol fuel cells,” Journal of Power Sources 196 (2011) 1802-1807. 273.Y.S. Li, T.S. Zhao, R. Chen, 2011, “Cathode flooding behavior in alkaline direct ethanol fuel cells,” Journal of Power Sources 196 (2011) 133-139. 274.T.S. Zhao, R. Chen, 2011, “Recent progress in understanding of coupled heat/mass transport and electrochemical reactions in fuel cells,” International Journal of Energy Research 2011; 35:15-23. 275.L. An, T.S. Zhao, S.Y. Shen, Q.X. Wu, R. Chen, 2011, “Alkaline direct oxidation fuel cell with non-platinum catalysts capable of converting glucose to electricity at high power output,” Journal of Power Sources 196 (2011) 186-190. 276.S.Y. Shen, T.S. Zhao, J.B. Xu, 2010, “Carbon-supported bimetallic PdIr catalysts for ethanol oxidation in alkaline media,” Electrochimica Acta 55 (2010) 9179–9184. 277.Q.X. Wu, T.S. Zhao, R. Chen, W.W. Yang, 2010, “Enhancement of water retention in the membrane electrode assembly for direct methanol fuel cells operating with neat methanol,” Int. J. Hydrogen Energy 35(2010) 10547-10555. 278.J.B. Xu, T.S. Zhao, Y.S. Li, W.W. Yang, 2010, “Synthesis and characterization of the Au-modified Pd cathode catalyst for alkaline direct ethanol fuel cells,” Int. J. Hydrogen Energy 35 (2010) 9693-9700. 279.J.B. Xu; T.S. Zhao; W.W. Yang; S.Y. Shen, 2010, “Effect of surface composition of Pt-Au alloy cathode catalyst on the performance of direct methanol fuel cells,” Int. J. Hydrogen Energy 35 (2010) 8699-8706. 280.J.B. Xu, T.S. Zhao, S.Y. Shen, Y.S. Li, 2010, “Stabilization of the palladium electrocatalyst with alloyed gold for ethanol oxidation,” Int. J. Hydrogen Energy 35 (2010) 6490-6500. 281.S.Y. Shen, T.S. Zhao, J.B. Xu, Y.S. Li, 2010, “Carbon-supported PtRh catalysts for ethanol oxidation in alkaline direct ethanol fuel cell,” Int. J. Hydrogen Energy 35 (2010) 12911-12917. 282.Y.S. Li, T.S. Zhao, W.W. Yang, 2010, “Measurements of water uptake and transport properties in anion-exchange membranes,” Int. J. Hydrogen Energy 35 (2010) 5656-5665. 283.E.D. Wang, J.B. Xu, T.S. Zhao, 2010, “Density functional theory studies of the structure sensitivity of ethanol oxidation on palladium surfaces,” Journal of Physical Chemistry 2010, 114, 10489-10497. 284.Q.X. Wu, T.S. Zhao, C. Xu, R. Chen, W.W. Yang, 2010, “A microfluidic-structured flow field for passive direct methanol fuel cells operating with highly concentrated fuels,” J. Micromech. Microeng. 20 (2010) 045014. 285.E.D. Wang, T.S. Zhao, W.W. Yang, 2010, “Poly (vinyl alcohol)/3-(trimethylammonium) propyl-functionalized silica hybrid membranes for alkaline direct ethanol fuel cells,” International Journal of Hydrogen Energy 35 (2010) 2183-2189. 286.L. An, T.S. Zhao, Q.X. Wu, R. Chen, S.Y. Shen, 2010, “Performance of a direct ethylene glycol fuel cell with an anion-exchange membrane,” Int. J. Hydrogen Energy 35 (2010) 4329-4335. 287.J.B. Xu, T.S. Zhao, 2010, “Synthesis of well-dispersed Pt/carbon nanotubes catalyst using dimethylformamide as a cross-link” Journal of Power Sources 195 (2010) 1071-1075. 288.S.Y. Shen, T.S. Zhao, J.B. Xu, Y.S. Li, 2010, “Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells,” Journal of Power Sources 195 (2010) 1001-1006. 289.M. Chen, C.Y. Du, G.P. Yin, P.F. Shi, T.S. Zhao, 2009, “Numerical analysis of the electrochemical impedance spectra of the cathode of direct methanol fuel cells,” Int. J. Hydrogen Energy 34 (2009) 1522-1530. 290.Y.S. Li, T.S. Zhao, Z.X. Liang, 2009, “Effect of polymer binders in the anode catalyst layer on performance of alkaline direct ethanol fuel cells,”J. Power Sources 190 (2009) 223-229. 291.Q.X. Wu, T.S. Zhao, R. Chen, W.W. Yang, 2009, “Effects of anode microporous layers made of carbon powder and nanotubes on water transport in direct methanol fuel cells,”J. Power Sources 191 (2009) 304-311. 292.W.W. Yang, T.S. Zhao, R. Chen, C. Xu, 2009, “An approach for determining the liquid water distribution in a liquid-feed direct methanol fuel cell,” Journal of Power Sources 190 (2009) 216-222. 293.W.W. Yang, T.S. Zhao, 2009, “Numerical investigations of effect of membrane electrode assembly structure on water crossover in a liquid-feed direct methanol fuel cell,” Journal of Power Sources 188 (2009) 433-446. 294.Y.S. Li, T.S. Zhao, Z.X. Liang, 2009, “Performance of alkaline electrolyte-membrane based direct ethanol fuel cells” Journal of Power Sources 187 (2009) 387-392. 295.Z.X. Liang, T.S. Zhao, J.B. Xu, L.D. Zhu, 2009, “Mechanism study of the ethanol oxidation reaction on palladium in alkaline media,” Electrochimica Acta 54 (2009) 2203-2208. 296.L.D. Zhu, T.S. Zhao, J.B. Xu, Z.X. Liang, 2009, “Preparation and characterization of carbon-supported submonolayer palladium decorated gold nanoparticles for the electro-oxidation of ethanol in alkaline media,” Journal of Power Sources 187 (2009) 80-84. 297.J.B. Xu, T.S. Zhao, Z.X. Liang, 2008, “Carbon Supported Platinum-Gold Alloy Catalyst for Direct Formic Acid Fuel Cells,” Journal of Power Sources 185 (2008) 857-861. 298.J.B. Xu, T.S. Zhao, Z.X. Liang, 2008, “Synthesis of Active Platinum-Silver Alloy Electrocatalyst towards the Formic Acid Oxidation Reaction,” J. Physical Chemistry C 2008, 112 (44), 17362-17367. 299.W.W. Yang, T.S. Zhao, 2008, “A transient two-phase mass transport model for liquid feed direct methanol fuel cells,” Journal of Power Sources 85 (2008) 1131-1140. 300.C.Y. Du, T.S. Zhao, Z.X. Liang, 2008, “Sulfonation of carbon-nanotube supported platinum catalysts for polymer electrolyte fuel cells,” Journal of Power Sources 176 (2008) 9-15. 301.Z.X. Liang, T.S. Zhao, J.B. Xu, 2008, “Stabilization of the platinum-ruthenium electrocatalyst against the dissolution of ruthenium with the incorporation of gold,” Journal of Power Sources 185 (2008) 166-170. 302.W.W. Yang, T.S. Zhao, Y.L. He, 2008, “Modeling of coupled electron and mass transport in anisotropic proton-exchange membrane fuel cell electrodes,” Journal of Power Sources 185 (2008) 765-775. 303.C. Xu, T.S. Zhao, W.W. Yang, 2008, “Modeling of water transport through the membrane electrode assembly for direct methanol fuel cells,” Journal of Power Sources, 178 (2008) 291-308. 304.Y. Shi, T.S. Zhao, Z.L. Guo, 2008, “Lattice Boltzmann simulation of thermal electro-osmotic flows in micro/nanochannels,” Journal of Computational and Theoretical Nanoscience 5, 236-246 (2008). 305.J.B. Xu, T.S. Zhao, Z.X. Liang, L.D. Zhu, 2008, “Facile Preparation of AuPt Alloy Nanoparticles from Organometallic Complex Precursor,” Chemistry of Materials, 2008, 20, 1688-1690. 306.Y.H. Chan, T.S. Zhao, R. Chen, C. Xu, 2008, “A small mono-polar direct methanol fuel cell stack with passive operation,” Journal of Power Sources 178 (2008) 118-124. 307.Y.H. Chan, T.S. Zhao, R. Chen, C. Xu, 2008, “A self-regulated passive fuel-feed system for passive direct methanol fuel cells,” Journal of Power Sources 176 (2008) 183-190. 308.R. Chen, T.S. Zhao, W.W. Yang, C. Xu, 2008, “Two-dimensional two-phase thermal model for passive direct methanol fuel cells,” Journal of Power Sources 175 (2008) 276-287. 309.Y. Shi, T.S. Zhao, Z.L. Guo, 2008, “Simplified model and lattice Boltzmann algorithm for microscale electro-osmotic flows and heat transfer,” Int. J. Heat Mass Transf. 51 (2008) 586-596. 310.Y. Wang, Y.L. He, T.S. Zhao, W.Q. Tao, 2007, “Implicit-explicit finite-difference lattice Boltzmann method for compressible flows,” International Journal of Modern Physics C, Vol. 18, No. 12 (2007) 1961-1983. 311.Z.L. Guo, B.C. Shi, T.S. Zhao, Z.G. Zheng, 2007, “Discrete effects on boundary conditions for lattice Boltzmann equation in simulating microscale gas flows,” Physical Review E 76, 056704 (2007). 312.W.W. Yang, T.S. Zhao, 2007, “Two-phase, mass-transport model for direct methanol fuel cells with effect of non-equilibrium evaporation and condensation” Journal of Power Sources 174 (2007) 136-147. 313.Z.X. Liang, T.S. Zhao, C. Xu, J.B. Xu, 2007, “Microscopic characterizations of membrane electrode assemblies prepared under different hot-pressing conditions,” Electrochimica Acta 53 (2007) 894-902. 314.W.W. Yang, T.S. Zhao, C. Xu, 2007, “Three-dimensional two-phase mass transport model for direct methanol fuel cells” Electrochimica Acta .53 (2007) 853-862. 315.C. Xu, T.S. Zhao, Y.L. He, 2007, “Effect of cathode gas diffusion layer on water transport and cell performance in direct methanol fuel cells,” Journal of Power Sources 171 (2007) 268-274. 316.Y. Shi, T.S. Zhao, Z.L. Guo, 2007, “Lattice Boltzmann simulation of dense gas flows in microchannels,” Physical Review E 76, 016707 (2007). 317.Z.X. Liang, T.S. Zhao, 2007, “New DMFC anode structure consisting of platinum nanowires deposited into a Nafion membrane,” Journal of Physical Chemistry C 2007, 111, 8128-8134. 318.W.W. Yang, T.S. Zhao, 2007, “A two-dimensional, two-phase mass transport model for liquid-feed DMFCs,” Electrochimica Acta 52 (2007) 6125-6140. 319.C. Xu, T.S. Zhao, 2007, “In situ measurements of water crossover through the membranes for direct methanol fuel cells,” Journal of Power Sources 168 (2007) 143-153. 320.R. Chen, T.S. Zhao, 2007, “Porous current collectors for passive direct methanol fuel cells,” Electrochimica Acta 52 (2007) 4317-4324. 321.R. Chen, T.S. Zhao, 2007, “Performance characterization of passive direct methanol fuel cells,” Journal of Power Sources 167 (2007) 455-460. 322.C.Y. Du, T.S. Zhao, W.W. Yang, 2007, “Simultaneous Oxygen-Reduction and Methanol Oxidation Reactions at the Cathode of a DMFC: A Model-Based Electrochemical Impedance Spectroscopy Study,” Journal of Power Sources 167 (2007) 265-271. 323.Z.L. Guo, Z.G. Zheng, B.C. Shi, T.S. Zhao, 2007, “Thermal lattice Boltzmann equation for low Mach number flows: Decoupling model,” Physical Review E 75, 036704 (2007). 324.C.Y. Du, T.S. Zhao, W.W. Yang, 2007, “Effect of Methanol Crossover on the Cathode Behavior of a DMFC: A Half-Cell Investigation,” Electrochimica Acta 52 (2007) 5266-5271. 325.J. Prabhuram, T.S. Zhao, Z.X. Liang, R. Chen, 2007, “A Simple method for the synthesis of PtRu nanoparticles on the multi-walled carbon nanotube for the anode of a DMFC,” Electrochimica Acta 52 (2007) 2649-2656. 326.R. Chen, T.S. Zhao, 2007, “A novel electrode architecture for passive direct methanol fuel cells,” Electrochemistry Communications 9 (2007) 718-724. 327.C. Xu, T.S. Zhao, 2007, “A new flow field design for polymer electrolyte-based fuel cells,” Electrochemistry Communications 9 (2007) 497-503. 328.C. Xu, Y.L. He, T.S. Zhao, R. Chen, Q. Ye, 2006, “Analysis of mass transport of methanol at the anode of a direct methanol fuel cell,” J. Electrochemical Society 153 (7) A1358-A1364 (2006). 329.Z.L. Guo, T.S. Zhao, Y. Shi, 2006, “Generalized hydrodynamic model for fluid flows: from nano to macro scales,” Physics of Fluids 18, 067107 (2006). 330.Z.X. Liang, T.S. Zhao, J. Prabhuram, 2006, “A glue method for fabricating membrane electrode assemblies for direct methanol fuel cells,” Electrochimica Acta 51 (2006) 6412-6418. 331.Z.X. Liang, T.S. Zhao, J. Prabhuram, 2006, “Diphenylsilicate Incorporated Nafion Membranes for Reduction of Methanol Crossover in Direct Methanol Fuel Cells,” Journal of Membrane Science 283 (2006) 219–224. 332.Z.L. Guo, T.S. Zhao, C. Xu, Y. Shi, 2006, “Simulation of fluid flows in the nanometer: kinetic approach and molecular dynamic simulation,” Int. J. Computational Fluid Dynamics Vol. 20, No. 6, July 2006, 361-367. 333.Q. Ye, T.S. Zhao, C. Xu, 2006 “The role of under-rib convection in mass transport of methanol through the serpentine flow field and its neighboring porous layer in a DMFC,” Electrochimica Acta 51 (2006) 5420–5429. 334.C. Xu, T.S. Zhao, Q. Ye, 2006, “Effect of anode backing layer on the cell performance of a direct methanol fuel cell,” Electrochimica Acta 51 (2006) 5524-5531. 335.Z.L. Guo, T.S. Zhao, Y. Shi, 2006,“Physical symmetry, spatial accuracy, and relaxation time of the lattice Boltzmann equation for micro gas flows,” J. Applied Physics 99, 074903 (2006). 336.R. Chen, T.S. Zhao, J.G. Liu, 2006, “Effect of cell orientation on the performance of passive direct methanol fuel cells,” Journal of Power Sources 157 (2006) 351-357. 337.J. Prabhuram, T.S. Zhao, Z.K. Tang, R. Chen, Z.X. Liang, 2006, “Multiwalled Carbon Nanotubes Supported PtRu for the Anode of Direct Methanol Fuel Cells,” J. Physical Chemistry B 2006, 110, 5245-5252. 338.Y. Shi, T.S. Zhao, Z.L. Guo, 2006, “Lattice Boltzmann method for incompressible flows with large pressure gradients”, Physical Review E 73, 026704 (2006). 339.C.W. Wong, T.S. Zhao, Q. Ye, J.G. Liu, 2006, “Experimental investigations of the anode flow field of a micro direct methanol fuel cell,” Journal of Power Sources 155 (2006) 291-296. 340.Y. Shi, T.S. Zhao, Z.L. Guo, 2006, “Finite Difference-Based Lattice Boltzmann Simulation of Natural Convection Heat Transfer in a Horizontal Concentric Annulus,” Computers & Fluids 35 (2006) 1-15. 341.J.G. Liu, T.S. Zhao, Z.X. Liang, R. Chen, 2006, “Effect of membrane thickness on the performance and efficiency of passive direct methanol fuel cells,” Journal of Power Sources, 153 (2006) 61-67. 342.J.W. Guo, T.S. Zhao, J. Prabhuram, R. Chen, C.W. Wong, 2006, “Development of PtRu-CeO2/C anode electrocatalyst for direct methanol fuel cells,” Journal of Power Sources 156 (2006) 345-354. 343.Q. Ye, T.S. Zhao, J.G. Liu, 2005, “Effect of transient hydrogen evolution/oxidation reactions on the OCV of direct methanol fuel cells,” Electrochemical and Solid-State Letters 8, A549-A553, (2005). 344.Q. Ye, T.S. Zhao, 2005, “Abrupt decline in open-circuit voltage of direct methanol fuel cells at critical oxygen feed rate,”J. the Electrochemical Society 152 (11) A2238-A2245 (2005). 345.Z.L. Guo, T.S. Zhao, Y. Shi, 2005, “Temperature dependence of the velocity boundary condition for nanoscale flows,” Physical Review E 72, 036301 (2005). 346.Z.L. Guo, T.S. Zhao, Y. Shi, 2005, “A lattice Boltzmann algorithm for electro-osmotic flows in microfluidic devices,” J. Chemical Physics 122, 144907 (2005). 347.C.W. Wong, T.S. Zhao, Q. Ye, J.G. Liu, 2005, “Transient capillary blocking in the flow field of a micro DMFC and its effect on cell performance,” J. the Electrochemical Society, 152 (8) A600-A1605 2005. 348.J. Prabhuram, T.S. Zhao, Z.X. Liang, H. Yang, C.W. Wong, 2005, “Pd and Pd-Cu Alloy Deposited Nafion Membranes for Reduction of Methanol Crossover in Direct Methanol Fuel Cells,” Journal of the Electrochemical Society, 152(7) A1390-A1397 (2005). 349.Q. Ye, T.S. Zhao, 2005, “Electrolytic hydrogen evolution in DMFCs induced by oxygen interruptions and its effect on cell performance,” Electrochemical and Solid-State Letters 8(4) A211-A214 (2005). 350.J.G. Liu, T.S. Zhao, R. Chen, C.W. Wong, 2005, “Effect of methanol concentration on passive DMFC performance,” Featured article in Fuel Cell Bulletin, ISSN 1464-2859 February 2005. 351.R. Chen, T.S. Zhao, 2005, “Mathematical modeling of a passive-feed DMFC with heat transfer effect,” Journal of Power Sources 152 (2005) 122-130. 352.J.W. Guo, T.S. Zhao, J. Prabhuram, R. Chen, C. W. Wong, 2005, “Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells,” Electrochimica Acta, 51 (2005) 754-763. 353.Z.L. Guo, T.S. Zhao, Y. Shi, 2005, “Simple kinetic model for fluid flows in the nanometer scale,” Physical Review E, Rapid Communication 71, 035301(R) (2005). 354.Q. Ye, T.S. Zhao, 2005, “A natural-circulation fuel delivery system for direct methanol fuel cells,” Journal of Power Sources 147 (2005) 196-202. 355.J.G. Liu, T.S. Zhao, R. Chen, C.W. Wong, 2005, “The effect of methanol concentration on the performance of a passive DMFC,” Electrochemistry Communications 7 (2005) 288-294. 356.J. Prabhuram, T.S. Zhao, H. Yang, 2005, “Methanol adsorbates on the DMFC cathode and their effect on the cell performance,” Journal of Electroanalytical Chemistry 578 (2005) 105-112. 357.X.L. Huai, S. Koyama, T.S. Zhao, 2005, “An experimental study of fluid flow and heat transfer of supercritical carbon dioxide in multi-port mini channels under cooling conditions,” Chemical Engineering Science 60 (2005) 3337-3345. 358.Q. Ye, T.S. Zhao, H. Yang, J. Prabhuram, 2005, “Electrochemical reactions in a DMFC under open circuit conditions,” Electrochemical and Solid-State Letters, 8 (1) A52-A54 (2005). 359.H. Yang, T.S. Zhao, Q. Ye, 2005, “Pressure drop behavior in the anode flow field of liquid feed direct methanol fuel cells,”Journal of Power Sources 142 (2005) 117-124. 360.H. Yang, T.S. Zhao, 2005, “Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells,” Electrochimica Acta 50 (2005) 3243-3252. 361.H. Yang, T.S. Zhao, Q. Ye, 2005, “In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields,” Journal of Power Sources, 139(1-2) pp. 79-90. 362.Z.L. Guo, T.S. Zhao, 2005, “Finite-difference-based lattice Boltzmann model for dense binary mixtures,” Physical Review E, 71, 026701 (2005). 363.Z.L. Guo, T.S. Zhao, 2005, “Lattice Boltzmann Simulation of Natural Convection with Temperature-Dependent Viscosity in a Porous Cavity,” Progress in Computational Fluid Dynamics, Vol. 5, Nos. 1-2, 2005. 364.T.S. Zhao, 2005, “Editorial: Lattice Boltzmann method,” Progress in Computational Fluid Dynamics, 5 (1-2): 2-2 2005 365.J.W. Guo, T.S. Zhao, J. Prabhuram, C.W. Wong, 2005 “Preparation and the physical/electrochemical properties of a Pt/C nanocatalyst stabilized by citric acid for polymer electrolyte fuel cells,” Electrochimica Acta 50 (2005) 1973-1983. 366.Z.L. Guo, T.S. Zhao, 2005, “A Lattice Boltzmann Model for Convection Heat Transfer in Porous Media,” Numerical Heat Transfer B: Fundamentals 47 (2): 157-177 FEB 2005. 367.H. Yang, T.S. Zhao, Q. Ye, 2004, “Addition of non-reacting gases to the anode flow field of DMFCs leading to improved performance,” Electrochemistry Communication, 6 (2004)1098 -1103. 368.J. Prabhuram, T.S. Zhao, C.W. Wong, J.W. Guo, 2004, “Synthesis and physical/electrochemical characterization of Pt/C nanocatalyst for polymer electrolyte fuel cells,” Journal of Power Sources, 134 (2004) 1-6 369.Z.L. Guo, T.S. Zhao, Y. Shi, 2004, “Preconditioned lattice-Boltzmann method for steady flows”, Physical Review E, 70, 066706 (2004). 370.X.L. Huai, S. Koyama, T.S. Zhao, E. Shinmura, K. Hidehiko, M. Masaki, 2004, “An experimental study of flow boiling characteristics of carbon dioxide in multiport mini channels,” Applied Thermal Engineering, 24 (2004) 1443–1463. 371.Y. Shi, T.S. Zhao, Z.L. Guo, 2004, “Thermal lattice Bhatnagar-Gross-Krook model for flows with viscous heat dissipation in the incompressible limit,” Physical Review E. 70, 066310 (2004). 372.J.C. Yu, Z.X. Li, T.S. Zhao, 2004, “An analytical study of pulsating laminar heat convection in a circular tube with constant heat flux,” Int. J. Heat Mass Transf. 47 (2004) 5297-5301. 373.H. Yang, T.S. Zhao, P. Cheng, 2004, “Gas-liquid two-phase flow patterns in a miniature square channel with a gas permeable sidewall,” Int. J. Heat Mass Transf. 47 (2004) 5725-5739. 374.Z.L. Guo, T.S. Zhao, 2003 “Discrete velocity and lattice Boltzmann models for binary mixtures of nonideal fluids,” Phys. Rev. E, Rapid Communication 68, 035302R (2003). 375.X.Z. Du, T.S. Zhao, 2003, “Analysis of film condensation heat transfer inside a vertical micro tube with consideration of the meniscus draining effect,” Int. J. Heat Mass Transf. 46 (2003) 4669-4679. 376.Z.L. Guo, T.S. Zhao, 2003 “Explicit finite-difference lattice Boltzmann method for curvilinear coordinates,” Physical Review E 67, 066709. 377.Z.Q. Ma , P. Cheng, T.S. Zhao, 2003, “A Palladium-Alloy Deposited Nafion Membrane for Direct Methanol Fuel Cells”, J. Membrane Science 215, pp.327-336. 378.Y.L. He, W.Q. Tao, T.S. Zhao, Z.Q. Chen, 2003, “Steady natural convection in a tilted long cylindrical envelope with lateral adiabatic surface. Part I: Theoretical modeling and numerical treatments,” Numerical Heat Transfer A, 44 (4): 375-397 SEP 2003. 379.Y.L. He, W.Q. Tao, T.S. Zhao, Z.Q. Chen, 2003, “Steady natural convection in a tilted long cylindrical envelope with lateral adiabatic surface. Part II: Heat transfer rate, flow patterns, and temperature distributions,” Numerical Heat Transfer A, 44 (4): 3 380.Q. Liao, T.S. Zhao, 2003, “Modeling of Taylor Bubble Rising in a Vertical Mini Noncircular Channel Filled with a Stagnant Liquid,” Int. J. Multiphase Flow , Vol. 29(3), pp.411-434. 381.Q.C. Bi, T.S. Zhao, Y.J. Guo, T.K. Chen, 2002, “Experimental investigations on boiling heat transfer inside miniature circular tubes immersed in FC-72,” J. Thermal Science, Vol. 11(4), pp. 303-307. 382.T.S. Zhao, Q. Liao, 2002, “Thermal Effects on Electro-Osmotic Pumping of Liquids in Microchannels,” J. Micromech. Microeng, Vol. 12, No. 6, pp.962-970. 383.S.M. Liao, T.S. Zhao, 2002, “An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes,” Int. J. Heat Mass Transf. 45 (2002) 5025-5034. 384.T.S. Zhao, Q. Liao, 2002, “Theoretical Analysis of Film Condensation Heat Transfer Inside Vertical Mini Triangular Channels,” Int. J. Heat Mass Transf. 45 (2002) 2829-2842. 385.S.M. Liao, T.S. Zhao, 2002, “Measurements of Heat Transfer Coefficients from Supercritical Carbon Dioxide Flowing in Horizontal Mini/Micro Channels,” J. Heat Transf.-Trans. ASME 2002, 124 (3), 413-420. 386.Z.L. Guo, T.S. Zhao, 2002, “Lattice Boltzmann model for incompressible flows through porous media,” Physical Review E, 66, 036304 (2002). 387.S.M. Liao, T.S. Zhao, 2002, “A Numerical Investigation of Laminar Convection of Supercritical Carbon Dioxide in Vertical Mini/micro Tubes,” Progress in Computational Fluid Dynamics, Vol. 2, No. 2, pp. 144-152. 388.X.L. Cao, P. Cheng, T.S. Zhao, 2002, “Experimental Study of Evaporative Heat Transfer in Sintered Copper Bi-Dispersed Wick Structures,” AIAA J. Thermophysics and Heat Transfer, 16(4), pp. 547-552. 389.T.S. Zhao, Q. Liao, 2002, “Rapid Vaporization of Subcooled liquid in a Capillary Structure,” Int. J. Heat Mass Transf. 45 (2002) 165-172. 390.Q.C. Bi, T.S. Zhao, 2001, “Taylor Bubbles in Miniaturized Circular and Noncircular Channels,” Int. J. Multiphase Flow, Vol. 27(3), pp. 561-570. 391.T.S. Zhao, Q.C. Bi, 2001, “Co-Current Air-Water Two-Phase Flow Patterns in Vertical Triangular Microchannels,” Int. J. Multiphase Flow, Vol. 27(5), pp. 765-782. 392.T.S. Zhao, Y.J. Song, 2001, “Forced Convection in a Porous Medium Heated by a Permeable Wall Perpendicular to Flow Direction: Analyses and Measurements,” Int. J. Heat Mass Transf. 44 (2001) 1031-1037. 393.Y.J. Song, T.S. Zhao, 2001, “Modeling and Test of a Thermally-Driven Phase-Change Nonmechanical Micropump,” J. Micromech. Microeng, Vol. 11(6), pp. 713-719. 394.T.S. Zhao, Q.C. Bi, 2001, “Pressure drop characteristics of gas-liquid two-phase flow in vertical miniature triangular channels,” Int. J. Heat Mass Transf. 44 (2001) 2523-2534. 395.Z.L. Guo, C.G. Zheng, T.S. Zhao, 2001, “A lattice BGK Scheme with General Propagation”, Journal of Scientific Computing, Vol 16 (4), pp. 569-585. 396.T.S. Zhao, P. Cheng, C.Y. Wang, 2000, “Buoyancy Induced Flows and Phase-Change Heat Transfer in a Vertical Capillary Structure with Symmetric Heating,” Chemical Engineering Science, Vol. 55(14), pp. 2653-2661. 397.H. Teng, T.S. Zhao, 2000, “An Extension of Darcy’s Law to Non-Stokes Flow in Porous Media,” Chemical Engineering Science, Vol. 55(14), pp. 2727-2735. 398.S.M. Liao, T.S. Zhao, A.Jakobsen, 2000, “A Correlation of Optimal Heat Rejection Pressures in Transcritical Carbon Dioxide Cycles,” Applied Thermal Engineering, Vol. 20(9), pp. 831-841. 399.Z.Q. Chen, P. Cheng, T.S. Zhao, 2000, “An Experimental Study of Two Phase Flow and Boiling Heat Transfer in Bi-Dispersed Porous Channels,” Int. Comm. Heat Mass Transfer, Vol. 27(3), pp. 293-302. 400.T.S. Zhao, Q. Liao, P. Cheng, 1999, “Variations of Buoyancy-Induced Mass Flux from Single-Phase to Two-Phase Flow in a Vertical Porous Tube with Constant Heat Flux”, J. Heat Transf.-Trans. ASME 1999, 121 (3), 646-652. 401.H. Teng, P. Cheng, T.S. Zhao, 1999, “Instability of Condensate Film and Capillary Blocking in Small-Diameter Thermosyphon Condensers,” Int. J. Heat Mass Transf. 42 (1999) 3071-3083. 402.Q. Liao, T.S. Zhao, 1999, “Evaporative Heat Transfer in a Capillary Structure Heated by a Grooved Block,” AIAA Journal of Thermophysics and Heat Transfer, Vol. 13(1), pp. 126-133. 403.H. Teng, T.S. Zhao, 1999, “Influence of Interfacial Mass Transfer and Chemical Reaction on Breakup of Low-Solubility Fluid Jets in Water”, Int. Comm. Heat Mass Transfer, Vol. 26 (2),pp. 177-185. 404.T.S. Zhao, Q. Liao, 1999, “Mixed Convective Boiling Heat Transfer in a Vertical Capillary Structure Heated Asymmetrically,” AIAA Journal of Thermophysics and Heat Transfer, Vol. 13, No. 3, pp. 302-307. 405.W.L. Pu, P. Cheng, T.S. Zhao, 1999, “Mixed-Convection Heat Transfer in Vertical Packed Channels,” Journal of Thermophysics and Heat Transfer, Vol.13 (4), pp.517-521. 406.J.L. Xu, P. Cheng, T.S. Zhao, 1999, “Gas-Liquid Two-Phase Flow Regimes in Rectangular Channels with a Mini/Micro Gaps,” Int. J. Multiphase Flow, Vol. 25(3), pp. 411-432. 407.T.S. Zhao, 1999, “Coupled Heat and Mass Transfer of a Stagnation Point Flow in a Heated Porous Bed with Liquid Film Evaporation,” Int. J. Heat Mass Transf. 42 (1999) 861-872. 408.T.S. Zhao, P. Cheng, 1998, “A Numerical Study of Laminar Reciprocating Flow in a Pipe of Finite Length,” Applied Scientific Research, Volume 59, No. 1, pp. 11-25. 409.P. Cheng, T.S. Zhao, 1998, “Transport Phenomenain an Orifice Pulse Tube Refrigerator/Cryocooler,” Thermal Science & Engineering, Vol. 6, No. 1, pp. 45-51. 410.X.C. Guo, T.S. Zhao, 1998, “A Parametric Study of an Indirect Evaporative Air Cooler,” Int. Comm. Heat Mass Transfer, Vol. 25 (2), pp. 217-226. 411.T.S. Zhao, P.Cheng, 1996, “Oscillatory Heat Transfer in a Pipe Subjected to a Laminar Reciprocating Flow,” J. Heat Transf.-Trans. ASME 1996, 118 (3), 592-597. 412.T.S. Zhao, P.Cheng, 1996, “Oscillatory Pressure Drops Through a Woven-Screen Packed Column Subjected to a Cyclic Flow,” Cryogenics, Vol. 36, pp. 333-341. 413.T.S. Zhao, P.Cheng, 1996, “Experimental Studies on the Onset of Turbulence and Frictional Losses in an Oscillatory Turbulent Pipe Flow,” Int. J. Heat Fluid Flow 17 (1996) 356-362. 414.T.S. Zhao, P.Cheng, 1996, “The Friction Coefficient of a fully Developed Laminar Reciprocating Flow in a Circular Pipe,” Int. J. Heat Fluid Flow 17 (1996) 167-172. 415.T.S. Zhao, P.Cheng, 1995, “A Numerical Solution of Laminar Forced Convection in a Heated Pipe Subjected to a Reciprocating Flow,” Int. J. Heat Mass Transf. 38 (1995) 3011-3022. 416.M. Fu, T.S. Zhao, C. Yang, S. Wu, 1992, “Use of Neat Methanol inan IDI Diesel Engine with a Ceramic Coated Prechamber” Transactions of the Chinese Society of I. C. Engines 10, No. 1 417.S. Wu, M. Fu, T.S. Zhao, 1988, “An Investigation on the Combustion Processes of a Diesel Engine with a Thermal Barrier Swirl Combustion Chamber”, Transactions of the Chinese Society of I. C. Engines 6, No. 2.   新闻动态 更多新闻 赵天寿教授获得由中国科学院颁发的2018年度最佳论文奖 2022-04-15 赵天寿教授获2018年何梁何利科技进步奖 2022-04-15 团队成员 查看更多 PrevNext UpDown 加入团队 查看更多 联系我们 联系地址 广东省深圳市南山区学苑大道1088号南方科技大学工学院北楼413 办公电话 0755-88011261 电子邮箱 zhaots@sustech.edu.cn 内容来自集群智慧云企服 实用新型专利1875代写全部资料全国受理