杨将科研成果_杨将专利信息_南方科技大学数学系杨将科研信息|杨将校企合作信息|杨将联系方式
全国客户服务热线:4006-054-001 疑难解答:159-9855-7370(7X24受理投诉、建议、合作、售前咨询),173-0411-9111(售前),155-4267-2990(售前),座机/传真:0411-83767788(售后),微信咨询:543646
企业服务导航

杨将科研成果

发布日期:2024-04-06 专利申请、商标注册、软件著作权、资质办理快速响应 微信:543646


杨将
姓名 杨将 性别
学校 南方科技大学 部门 数学系
学位 学历
职称 副教授 联系方式 深圳市南山区南方科技大学慧园三栋423
邮箱 yangj7@sustech.edu.cn    
软件产品登记测试全国受理 软件著作权666元代写全部资料全国受理 实用新型专利1875代写全部资料全国受理
杨将

教师主页 团队成员 科研项目 研究领域 学术成果 教学 科研分享 新闻动态 疼痛医学中心 成果介绍 软件 毕业去向 加入我们 联系我们 杨将 副教授 数学系 Education: Ph.D., Hong Kong Baptist University, Mathematics, 2011.6-2014.7, Advisor: Prof. Tao TANG.  B.S., Zhejiang University, Mathematics, 2006.9-2010-7    Professional Experience: Associate Professor, Southern University of Science and Technology, Department of Mathematics, 2018.2 - present  Assistant Professor, Southern University of Science and Technology, Department of Mathematics, 2017.7 - 2018.1  Postdoctoral Research Scientist, Columbia University, Applied Physics and Applied Mathematics, 2015.8 - 2017.6, Mentor: Prof. Qiang Du.   Research Associate, Pennsylvania State University, Department of Mathematics, 2014.8 - 2015.7, Mentor: Prof. Qiang Du. 个人简介 个人简介 研究领域 ◆ 微分方程数值解 ◆ 相场模型的建模、计算以及应用 ◆ 非局部模型的建模、计算以及应用 教学 Fall 2019 MA305: Numerical Analysis, SUSTech, China  Spring 2019 MA325: Numerical PDEs, SUSTech, China  Fall 2018 MA305: Numerical Analysis, SUSTech, China  Fall 2018 MA130A: Linear algebra I A, SUSTech, China  Spring 2018 MA325: Numerical PDEs, SUSTech, China  Fall 2017 MA305: Numerical Analysis, SUSTech, China  Fall 2016 MA366: Ordinary Differential Equations , Purdue University, USA 学术成果 查看更多 J. Shen, J. Xu, and J. Yang, A new class of efficient and robust energy stable schemes for gradient flows, SIAM Rev., 61-3 (2019), pp. 474-506. L.F. Li, S. S. Luo, X.C. Tai and J. Yang, A Variational Convex Hull Algorithm, Seventh International Conference on Scale Space and Variational Methods in Computer Vision, 2019, organized by Microsoft Corporation. Tao Tang and Jiang Yang, Computing the Maximal Eigenpairs of Large Size Tridiagonal Matrices with O(1) Number of Iterations, Numer. Math. Theor. Meth. Appl., 11 (2018), pp. 877-894. Q. Du, Y. Tao, X. Tian and J. Yang, Asymptotically compatible discretization of multidimensional nonlocal diffusion models and approximation of nonlocal Green’s functions, IMA J. Numer. Anal., 39(2) (2019), 607-625. J. Shen, J. Xu, and J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys., 353 (2018), 407-416. Q. Du, J. Yang, and W. Zhang, Numerical analysis on the uniform $L^p$-stability of Allen-Cahn equations, Int. J. Numer. Anal. Mod., 15(1-2) (2018), 213-227. T. Hou, T. Tang and J. Yang, Numerical analysis of fully discretized Crank–Nicolson scheme for fractional-in-space Allen-Cahn equations, J. Sci. Comput., 72(3) (2017), 1214-1231. Q. Du and J. Yang, Fast and Accurate Implementation of Fourier Spectral Approximations of Nonlocal Diffusion Operators and its Applications, J. Comput. Phys., 332 (2017), 118-134. Q. Du, J. Yang and Zhi Zhou, Analysis of a nonlocal-in-time parabolic equations, Dis. Cont. Dyn. Sys. B, 22(2) (2017), 339-368. W. Zhang, J. Yang, J. Zhang, and Q. Du, Artificial boundary conditions for nonlocal heat equations on unbounded domain, Comm. Comp. Phys., 21(1) (2017), 16-39. J. Shen, T. Tang and J. Yang, On the maximum principle preserving schemes for the generalized Allen-Cahn equation, Comm. Math. Sci., 14(6) (2016), 1517-1534. T. Tang and J. Yang, Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle, J. Comput. Math., 34(5) (2016), 471-481. Q. Du, Y. Tao, X. Tian and J. Yang, Robust a posteriori stress analysis for approximations of nonlocal models via nonlocal gradients, Comp. Meth. Appl. Mech. Eng. 310 (2016), 605-627. Q. Du and J. Yang, Asymptotically compatible Fourier spectral approximations of nonlocal Allen-Cahn equations, SIAM J. Numer. Anal., 54(3) (2016), 1899-1919. X. Feng, T. Tang and J. Yang, Long time numerical simulations for phase-field problems using p-adaptive spectral deferred correction methods, SIAM J. Sci. Comput. 37 (2015), A271-A294. X. Feng, T. Tang and J. Yang, Stabilized Crank-Nicolson/Adams-Bashforth schemes for phase field models, East Asian Journal on Applied Mathematics, 3 (2013), pp. 59-80. X. Feng, H. Song, T. Tang, and J. Yang, Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation, Inverse Problems and Imaging, Volume 7 (2013), pp. 679 – 695. 团队成员 查看更多 PrevNext UpDown 加入团队 查看更多 联系我们 联系地址 深圳市南山区南方科技大学慧园三栋423 办公电话 +86-755-88018715 电子邮箱 yangj7@sustech.edu.cn

内容来自集群智慧云企服 www.jiqunzhihui.net