吴凤江科研成果_吴凤江专利信息_哈尔滨工业大学电气工程及自动化学院吴凤江科研信息|吴凤江校企合作信息|吴凤江联系方式
全国客户服务热线:4006-054-001 疑难解答:159-9855-7370(7X24受理投诉、建议、合作、售前咨询),173-0411-9111(售前),155-4267-2990(售前),座机/传真:0411-83767788(售后),微信咨询:543646
企业服务导航

吴凤江科研成果

发布日期:2024-05-10 专利申请、商标注册、软件著作权、资质办理快速响应 微信:543646


吴凤江
姓名 吴凤江 性别 吴凤江
学校 哈尔滨工业大学 部门 电气工程及自动化学院
学位 吴凤江 学历 吴凤江
职称 教授 联系方式 0451-86412946
邮箱 shimeng@hit.edu.cn    
软件产品登记测试全国受理 软件著作权666元代写全部资料全国受理 实用新型专利1875代写全部资料全国受理
吴凤江

基本信息 科学研究 教育教学 论文专著 新建主栏目 基本信息 名称 吴凤江,男,汉族,1980年生。博士后,教授,博士生导师;IEEE Senior Member. 哈尔滨工业大学电气工程学院电磁驱动与控制研究所所长。新加坡南洋理工大学高级研究员。 主持或参与了多项国家自然科学基金项目、博士点基金、企业合作等科研课题。国际著名学术期刊《IEEE ACCESS》、《IET Power Electronics》副主编。共发表学术论文100余篇,包括50余篇电气工程领域顶级期刊SCI收录JCR1区学术论文。 工作经历 名称 时间 工作经历 2008.01 - 2012.12 讲师 2008.05 - 2011.04 博士后 2011.04 – 2015.04 硕士生导师 2012.12 – 2021.12 副教授 2015.04– 现在 博士生导师 2016.01-2017.12 Senior Research Fellow, 新加坡南洋理工大学(NTU) 2022.01– 现在 教授 教育经历 名称 1998.9 - 2002.7 哈尔滨工业大学,电气工程及其自动化,学士学位 2002.9 - 2004.7 哈尔滨工业大学,电气工程及其自动化,硕士学位 2004.9 - 2007.10 哈尔滨工业大学,电气工程及其自动化,博士学位 学术任职 名称 IEEE Senior member IEEE Power and Energy Society电力负荷专委会(中国)常务理事 电力系统直流电源专委会委员 中国电机工程学会 会员 SCI收录电气工程领域国际重要学术期刊《IET Power Electronics》副主编(Associate Editor) SCI收录电气工程领域国际重要学术期刊《IEEE Access》副主编(Associate Editor) SCI收录电气工程领域国际重要学术期刊《Applied Sciences》(JCR2区)客座主编 国家自然科学基金评审专家 《IEEE Transactions on Industrial Electronics》审稿人《IEEE Transactions on Power Electronics》审稿人 《IET Power Electronics》审稿人 《Journal of Power Electronics》审稿人 《International Journal of Electrical Power and Energy Systems》 审稿人 《中国电机工程学报》 审稿人 《电网技术》 审稿人 《西安交通大学学报》 审稿人 《电力自动化设备》 审稿人 研究领域 名称 致力于国家能源转型重大战略需求,助力国家早日实现“双碳目标”。主要研究方向包括: 可再生能源并网发电技术 蓄电池、超级电容储能系统及其应用 清洁能源制氢系统高能效功率变换与控制 基于宽禁带器件的高集成高能效高频隔离功率变换技术 无线电能传输与无线充电技术 多源融合智慧供能系统与能量管理 电机驱动与控制 交直流逆变电源 科研项目 名称 1. 国家自然科学基金. 模块化单级式高频隔离型双向升降压谐振式AC-DC功率变换技术研究. 负责人。(在研) 2. 国家自然科学基金. 适应可再生能源宽发电范围的高效在线拓扑切换并网逆变技术研究. 负责人。(结题) 3. 黑龙江省自然科学基金. 多拓扑模式可再生能源并网发电系统关键技术研究. 负责人。(在研) 4. 教育部博士点基金. 包含可再生发电源直流微电网高效功率变换与动态功率精确控制研究. 负责人。(结题) 5. 黑龙江省博士后科研启动金. 在线拓扑可变型可再生能源并网发电技术机理与应用基础研究. 负责人。(结题) 6. 哈尔滨工业大学创新基金. 包含可再生发电源的直流微电网电能耦合机理与控制策略研究. 负责人。(结题) 7. 国家自然科学基金. 基于开放绕组的**同步发电机及功率变换与谐波控制技术研究. 主要参加人。(在研) 8. 与国际高水平学者共建研究生课程项目。主要参加人。(结题) 9. 企业合作课题. ***负载补偿与节能系统. 子项目负责人.(在研) 10. 中央引导地方科技项目,可再生能源制氢高集成高能效功率变换与能量管理. 负责人。(在研) 讲授课程 名称 本科生 《微特电机及其控制》 《现代电机节能调速技术》 《规模化光伏发电直流微电网及其多模态控制技术》 《改变生活的电气新技术》 《储能电力变换》 硕士研究生 《电机驱动与控制理论》(与国外大学共建) 《分布式储能技术》 博士研究生 《交流电机系统控制理论与动态分析》 招生信息 名称 硕士/博士招生方向清洁能源并网逆变技术 多发电源集成功率变换与系统 高频隔离功率变换技术 绿色制氢系统 无线电能传输系统 桃李满天 名称 博士研究生 李晓光. 面向储能系统的先进双向升降压AC-DC功率变换技术研究. 2015.9-2020.9 (研究生国家奖学金,直博) 王凯旋. 多端口高频隔离型DC-AC功率变换技术研究. 2019.9- 魏宇晨. 高集成高性能无线电能传输系统. 2020.9- 硕士研究生 1. 俞雁飞. 光伏—超级电容混合直流微电网的电能控制技术研究. 2012.6 2. 陈小龙. 基于超级电容储能的统一电能质量调节技术研究. 2012.6 3. 孙博. 拓扑切换型并网逆变器及其在线效率优化技术研究. 2013.6 (研究生国家奖学金。校级优秀毕业生。丹麦奥尔堡大学攻读博士学位) 4. 张陆捷. 考虑电网不对称及谐波的并网逆变系统控制技术研究. 2014.6 (研究生国家奖学金。美国攻读博士学位) 5. 冯帆. 两级式多拓扑模式并网逆变技术研究. 2015.6(研究生国家奖学金。新加坡攻读博士学位) 6. 李帛洋. 可变拓扑二极管箝位型并网逆变器研究. 2017.6 (研究生国家奖学金。华为新能源) 7. 颜之琛. 面向微电网的超级电容充放电控制系统研究. 2017.6 (华为新能源) 8. 樊帅. 双向升降压电流型高频隔离DC-DC功率变换技术研究. 2018.9-2020.6 (研究生国家奖学金。保送本校攻读博士学位) 9. 宫庆雨. 三电平单级式高频隔离型AC-DC变换技术研究. 2018.9-2020.6 10. 卜宏泽. 三电平AC-AC电力电子变压器及其控制技术研究. 2018.9-2020.6 11. 张如昊. 基于SiC器件的无线充电系统研究. 2019.9-2021.6 12.王哲钰. 单级式高频隔离型AC-DC变换器串并联运行技术研究. 2019.9-2021.6 本科生 孙奎. 基于FPGA的三电平载波移相SPWM方法的实现. 2008.6 (优秀毕业论文) 郭新. 宽调速范围感应电动机变频控制系统研究. 2009.6 郁军永. 单相电压型并网逆变器设计. 2009.6 俞雁飞. 基于dsPIC30F2010的单相电压型并网逆变器设计. 2010.6. (保送本校读研) 李贺龙. 感应电动机矢量控制系统设计. 2010. 6(保送本校读研) 于祥让. 感应电动机转差频率型矢量控制系统研究. 2011.6 冯帆. 单相高频斩控型交流稳压电源设计. 2011.6 孙博. 基于DSP的单相三电平并网逆变系统设计. 2011. 6 (优秀毕业论文) 彭浩荣. 单相电压型并网逆变器设计. 2012.6 江彦. 面向直流微电网的升压型光伏发电系统研究. 2013.6 (保送华中科技大学读研) 李帛洋.二极管箝位型并网逆变系统研究. 2015.6. (保送本校读研) 颜之琛.级联型光伏并网逆变器的研究. 2015.6. 罗楚航.无变压器型六开关并网逆变器设计.2015.6. 杨馥源.混合式高频隔离型DC-DC变换器研究.2019.6 徐浩.面向直流微电网的直流有源滤波器设计.2020.6 邓如昊.单相二极管箝位型并网逆变器设计.2020.6 论文期刊 名称 在电气工程领域国际顶级期刊等刊物上共发表SCI收录论文60余篇,EI检索论文近20篇,核心期刊10余篇。 Isolated DC-AC converter: [1] F. Wu, X. Li, G. Wang, H. Liu and Y. Dai, "Analysis of Effect of Grid Harmonics and Unbalance on DAB-Based Three-Phase Single-Stage AC–DC Converter and Solutions," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 1, pp. 1192-1202, Feb. 2022. [2] S. Luo, F. Wu and G. Wang, "Single-Stage Hybrid Three-Level DAB Type Resonant AC–DC Converter," in IEEE Transactions on Transportation Electrification, vol. 8, no. 1, pp. 799-807, March 2022. [3] F. Wu, X. Li, G. Yang, H. Liu and T. Meng, "Variable Switching Period Based Space Vector Phase-Shifted Modulation for DAB based Three-Phase Single-Stage Isolated AC-DC Converter," IEEE Transactions on Power Electronics, vol. 35, no. 12, pp. 13725-13734, Dec. 2020. [4] F. J. Wu, X. Li, S. Luo, “Improved modulation strategy for single-phase single-stage isolated AC-DC converter considering power reversion zone,” IEEE Trans. Power Electron., vol. 35, no. 4, pp. 4157-4167, Apr. 2020. [5] X. Li, F. J. Wu, G. Yang, H. Liu, “Improved modulation strategy for single-phase isolated quasi-single-stage AC-DC converter to improve current characteristics,” IEEE Trans. Power Electron., vol. 35, no. 4, pp. 4296-4308, Apr. 2020. [6] X. Li, F. Wu, G. Yang, H. Liu and T. Meng, “Dual-period-decoupled space vector phase-shifted modulation for DAB based three-phase single-stage AC-DC converter,” IEEE Transactions on Power Electronics. Vol. 35, no. 6, pp. 6447-6457, Jun. 2020. [7] X. Li, F. J. Wu, G. Yang, H. Liu, “Precise calculation method of vector dwell times for single-stage isolated three-phase buck-type rectifier to reduce grid current distortions,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 4, pp. 4457-4466, Dec. 2020. [8] Suhua Luo; Fengjiang Wu; Guizhong Wang, Single-Stage Hybrid Three-Level DAB Type Resonant AC–DC Converter, IEEE Transactions on Transportation Electrification, Year: 2022 | Volume: 8, Issue: 1. [9] F. J. Wu, Y. Wei, J. Su. Three-Level Isolated Direct AC-AC Converter and Its Closed-loop Control Strategy, IEEE Transactions on Transportation Electrification, Year: 2023 | Early Access Article [10]F. J. Wu, K. Wang, G. Hu, Y. Shen, S. Luo. Overview of Single-Stage High-Frequency Isolated AC–DC Converters and Modulation Strategies, IEEE Transactions on Power Electronics,Year: 2023 | Volume: 38, Issue: 2: 1583 - 1598 Isolated DC-DC converter: [1] F. Wu, K. Wang and S. Luo, "Hybrid-Three-Level Current-Fed Series-Resonant Isolated DC-DC Converter and its Optimization Modulation Strategy," in IEEE Transactions on Power Electronics, vol. 37, no. 1, pp. 196-205, Jan. 2022. [2] K. Wang, W. Liu and F. Wu, "Topology-Level Power Decoupling Three-Port Isolated Current-Fed Resonant DC-DC Converter," in IEEE Transactions on Industrial Electronics, vol. 69, no. 5, pp. 4859-4868, May 2022. [3] S. Fan, F. Wu and H. Liu, "Unified Closed-loop Control and Parameters Design of Buck-Boost Current-Fed Isolated DC-DC Converter with Constant Power Load," in IEEE Journal of Emerging and Selected Topics in Power Electronics, 10, Issue: 4, pp.4207 – 4217, 2022. [4] S. Luo, F. Wu and G. Wang, "Effect of Dead Band and Transient Actions on CTPS Modulation for DAB DC–DC Converter and Solutions," in IEEE Transactions on Transportation Electrification, vol. 7, no. 3, pp. 949-957, Sept. 2021 [5] F. Wu, Z. Wang and S. Luo, "Buck–Boost Three-Level Semi-Dual-Bridge Resonant Isolated DC–DC Converter," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 5, pp. 5986-5995, Oct. 2021 [6] F. Wu, S. Fan and S. Luo, "Elimination of Transient Current Mutation and Voltage Spike for Buck–Boost Current-Fed Isolated DC–DC Converter," in IEEE Transactions on Industrial Electronics, vol. 68, no. 11, pp. 10928-10937, Nov. 2021 [7] F. Wu, S. Fan and S. Luo, "Small-Signal Modeling and Closed-Loop Control of Bidirectional Buck-Boost Current-Fed Isolated DC–DC Converter," in IEEE Transactions on Industrial Electronics, vol. 68, no. 5, pp. 4036-4045, May 2021 [8] F. J. Wu, S. Fan, X. Li, S. Luo, “Bidirectional buck-boost current-fed isolated DC-DC converter and its modulation,” IEEE Trans. Power Electron., vol. 35, no. 5, pp. 5506-5516, May 2020. [9] F. J. Wu, F. Feng, and H. B. Gooi, “Cooperative triple-phase-shift control for isolated DAB converter to improve inductor current characteristics,” IEEE Trans. Ind. Electron., vol. 66, no. 9, pp. 7022-7031, Sep. 2019. [10] S. H. Luo, F. J. Wu, and G. Wang, “Improved TPS control for DAB DC-DC converter to eliminate dual-side flow back currents,” IET Power Electron., vol.13, no. 1, pp. 32-39, Jan. 2020. [11] S. H. Luo, and F. J. Wu, “Hybrid modulation strategy for IGBT-based isolated dual-active-bridge DC–DC converter,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 3, pp. 1336-1344, Mar. 2018. [12] F. Wu, Z. Wang and S. Luo, "Buck-Boost Three-Level Semi-Dual-Bridge Resonant Isolated DC-DC Converter," in IEEE Journal of Emerging and Selected Topics in Power Electronics, Nov. 2020. [13]Fengjiang Wu; Wenkai Liu; Kaixuan Wang; Guizhong Wang. Modeling and Closed-Loop Control of Three-Port Isolated Current-Fed Resonant DC-DC Converter, IEEE Transactions on Transportation Electrification, 2022, 8 early access, DOI: 10.1109/TTE.2022.3198288 . Grid-connected inverter: [1] S. Luo, F. Wu, and K. Zhao, “Modified single-carrier multi-level SPWM and on-line efficiency enhancement for single-phase asymmetrical NPC grid-connected inverter,” IEEE Trans. Ind. Inform., vol. 16, no. 5, pp. 3157-3167, May 2020. [2] F. J. Wu, B. Li, and H. B. Gooi, “Principle and control of modified cascaded NPC-GCI with variable topology ability to enhance European efficiency,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 1214-1221, Feb. 2017. [3] F. J. Wu, X. Li, F. Feng, and H. B. Gooi, “Multi-topology-mode grid-connected inverter to improve comprehensive performance of renewable energy source generation system,” IEEE Trans. Power Electron., vol. 32, no. 5, pp. 3623-3633, May 2017. [4] F. J. Wu, D. Sun, and J. Duan, “Diagnosis of single-phase open-line fault in three-phase PWM rectifier with LCL filter,” IET Generation, Transmission & Distribution, 2016, vol. 10, no. 6, pp. 1410 – 1421, Jun. 2016. [5] F. J. Wu, X. G. Li, F. Feng, and H. B. Gooi, “Modified cascaded multilevel grid-connected inverter to enhance European efficiency and several extended topologies,” IEEE Trans. Ind. Inform., vol. 11, no. 6, pp. 1358-1365, Dec. 2015. [6] F. J. Wu, B. Sun, J. Duan, and K. Zhao, “On-line variable topology-type photovoltaic grid-connected inverter,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4814-4822, Aug. 2015. [7] F. J. Wu, F. Feng, and J. Duan, “Zero-crossing disturbance elimination and spectrum analysis of single-carrier seven-level SPWM,” IEEE Trans. Ind. Electron., vol. 62, no. 2, pp.982-990, Feb. 2015. [8] F. J. Wu, F. Feng, L. S. Luo, and J. Duan, “Sampling period on-line adjusting based hysteresis current control without band with constant switching frequency,” IEEE Trans. Ind. Electron., vol. 62, no.1, pp. 270-277, Jan. 2015. [9] F. J. Wu, B. Sun, K. Zhao, and L. Sun, “Analysis and solution of current zero-crossing distortion with unipolar hysteresis current control in grid-connected inverter,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4450-4457, Oct. 2013. [10]F. J. Wu, X. Li, and J. Duan, “Improved elimination scheme of current zero-crossing distortion in unipolar hysteresis current controlled grid-connected inverter,” IEEE Trans. Ind. Inform., vol. 11, no. 5, pp. 1111-1118, May 2015. [11]F. J. Wu, X. G. Li, F. Feng, and H. B. Gooi, “Efficiency enhancement scheme of cascaded multilevel grid-connected inverter and its improvement to eliminate effect of non-ideal grid conditions,” International Journal of Electrical Power and Energy Systems, vol. 76, pp. 120-128, Jan. 2016. [12]F. J. Wu, J. Duan, and F. Feng, “Modified single-carrier multilevel SPWM for asymmetrical IGBT-clamped grid-connected inverter,” IET Power Electron., vol. 8, no. 8, pp. 1531-1541, Aug. 2015. [13]F. J. Wu, L. Zhang, and Q. Wu, “Simple unipolar maximum switching frequency limited hysteresis current control for grid-connected inverter,” IET Power Electron., vol. 7, no.4, pp. 933-945, Apr. 2014. [14]F. J. Wu, K. Zhao, and L. Sun, “Simplified multilevel space vector pulse-width modulation scheme based on two-level space vector pulse-width modulation,” IET Power Electron., 2012, vol. 5, no. 5, pp. 609-616, May 2012. [15]F. J. Wu, B. Sun, L. Zhang, and L. Sun, “Half-cycle-waveform-inversed Single-carrier Seven-level Sinusoidal Modulation,” Journal of Power Electronics, vol. 13, no. 1, pp. 86-93, Jan. 2013. [16]F. J. Wu, B. Sun, and H. Peng, “Single-phase three-level SPWM scheme suitable for implementation with DSP,” IET Electronics Letters, vol. 47, no. 17, pp. 994-995, Sep. 2011. Phase-locked loop: [1] F. J. Wu, D. Sun, L. Zhang, and J. Duan, “Influence of plugging DC offset estimation integrator in single-phase EPLL and alternative scheme to eliminate effect of input DC offset and harmonics,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4823-4831, Aug. 2015. [2] F. J. Wu, L. Zhang, and J. Duan, “Effect of adding DC-offset estimation integrators in three-phase enhanced phase-locked loop on dynamic performance and alternative scheme,” IET Power Electron., vol. 8, no. 3, pp. 391-400, Mar. 2015. [3] F. J. Wu, L. Zhang, and J. Duan, “A new two-phase stationary frame based enhanced PLL for three-phase grid synchronization,” IEEE Trans. Circuits and Systems—II: Express Briefs, vol. 62, no. 3, pp. 251-255, Mar. 2015. [4] F. J. Wu, and X. G. Li, “Multiple DSC Filter-based three-phase EPLL for nonideal grid synchronization,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 3, pp. 1396-1403, Mar. 2017. [5] S. H. Luo, and F. J. Wu. “Improved two-phase stationary frame EPLL to eliminate effect of input harmonics, unbalance and DC offsets,” IEEE Trans. on Ind. Inform., vol. 13, no. 6, pp. 2855 – 2863, Jun. 2017. [6] G. Wang, F. Wu, “Virtual quadrature-coordinate EPLL for single-phase grid information synchronization,” Electronics Letters, vol. 55, no. 22, pp. 109 – 111, Feb. 2019. [7] D. Yin, G. Wang, F. J. Wu, “Improved virtual quadrature-coordinate EPLL considering input harmonics and DC offset, ” Journal of Power Electronics, to be published, pp. 1-9, Jun. 2019. 专利 名称 1. 吴凤江等. 消除单极性控制单相并网逆变器并网电流过零点畸变的装置及方法. 发明专利号:ZL201110022724.2, 授权日期:2012.10.3. 2. 吴凤江等. 双三电平在线拓扑可切换型逆变器. 发明专利号:2013105298525, 申请日期:2013.11.11. 3. 吴凤江等. 直流微电网中光伏发电系统电流的周期波动抑制方法. 发明专利号:2013105520830, 申请日期:2013.11.11. 4. 吴凤江等. 单相在线拓扑可切换型逆变器.发明专利号:2013105331311, 申请日期:2013.11.4. 5. 吴凤江等. 用于并网电流滞环控制算法的开关周期固定控制方法. 发明专利号:201310533135x, 申请日期:2013.11.4. 6. 吴凤江等. 直流微电网中光伏发电系统的比例积分准谐振控制方法.发明专利号:201310533255x, 申请日期:2013.11.4. 7. 吴凤江等. 基于单相锁相环算法的幅值、频率和相角检测方法. 发明专利号:2013105331345, 申请日期:2013.11.4. 8. 吴凤江等. 二极管箝位型在线拓扑可切换逆变器. 发明专利号:2013105305177, 申请日期:2013.11.1. 9. 吴凤江等. 一种拓扑可变型并网逆变器的控制方法. 发明专利号:2013105305209, 申请日期:2013.11.1. 10. 吴凤江等. 混合不对称7电平逆变器过零点畸变的消除方法. 发明专利号:2013105201394, 申请日期:2013.10.30. 11. 吴凤江等. 面向直流微电网的直流有源滤波器的控制方法. 发明专利号:201310519945x, 申请日期:2013.10.30. 12. 吴凤江等. Z源型并网逆变器的电流预测无差拍控制方法及实现装置。发明专利。200910073364.1 13. 吴凤江等. 具有网侧功率因数校正功能的光网混合供电不间断电源。发明专利。200910217443.5 14. 吴凤江等. 无交流电压传感器并网逆变器的直接功率控制方法。发明专利。201010109338.2 15. 吴凤江等. 具有制动器失效保护装置的起重机及制动器失效保护方法。发明专利。200910310899.6 16. 吴凤江等. 单元矢量延时叠加多电平空间矢量的调制方法及实现电路。发明专利。200910073418.4 17. 吴凤江等. 电能回馈式光网混合供电不间断逆变电源。发明专利。201010301374.9 18. 吴凤江等. 具有多种数据交换方式及充电功能的手机数据备份器。发明专利。201010301146.1 19. 吴凤江等. 感应电机四象限变频调速装置。发明专利。200910311107.7 20. 吴凤江等. 光网混合供电不间断逆变电源的电能控制方法。发明专利。201010301375.3 21. 吴凤江等. 变频式智能型阀门电动装置。发明专利。200710072541.5 22. 吴凤江等. 变频式智能型阀门执行机构。发明专利。200710072540.0 23. 吴凤江等. 游梁式抽油机恒功率控制装置。实用新型。200520021579.6 24. 吴凤江等. 三相混合式步进电动机正弦波细分驱动器。实用新型。200520020947.5 25. 吴凤江等. 步进电机正弦波驱动器。发明专利.200510010056.6 26. 吴凤江等. 感应电机的转速与参数同时辨识方法。201110009350.0 27. 吴凤江等. 带指数渐消因子的卡尔曼滤波器的感应电机转速观测方法.201110021716.6 28. 吴凤江等. 一种带有LCL滤波器的并网逆变器的电容电流前馈控制方法. 201110022695.x 29. 吴凤江等.单相并网逆变器的并网电流单极性无环宽滞环控制装置及方法.201110022722.3