杨大智科研成果_杨大智专利信息_哈尔滨工业大学电气工程及自动化学院杨大智科研信息|杨大智校企合作信息|杨大智联系方式
全国客户服务热线:4006-054-001 疑难解答:159-9855-7370(7X24受理投诉、建议、合作、售前咨询),173-0411-9111(售前),155-4267-2990(售前),座机/传真:0411-83767788(售后),微信咨询:543646
企业服务导航

杨大智科研成果

发布日期:2024-05-10 专利申请、商标注册、软件著作权、资质办理快速响应 微信:543646


杨大智
姓名 杨大智 性别 杨大智
学校 哈尔滨工业大学 部门 电气工程及自动化学院
学位 杨大智 学历 杨大智
职称 教授 联系方式 yangdazhi.nus@gmail.com
邮箱 yangdazhi.nus@gmail.com    
软件产品登记测试全国受理 软件著作权666元代写全部资料全国受理 实用新型专利1875代写全部资料全国受理
杨大智

Info Research Publications On forecasting Teaching 新建主栏目 基本信息 名称 Dazhi Yang(杨大智),1985年生,博士,教授,博士生导师。分别于2009,2012,2015年在新加坡国立大学获得学士,硕士,博士学位。2020年获得国家高层次人才计划(青年)项目支持。2017年成为领域权威期刊《Solar Energy》最年轻的编委,2019年起出任该杂志的区域主编。国际能源署“高渗透和大规模太阳能资源应用”分区的亚洲代表。共发表SCI论文140余篇,总引用7300(谷歌学术),H-因子46,i-10因子112。太阳能预报的SCI文章数量世界第一。以第一作者身份与加州大学Jan Kleissl教授共同撰写世界第一部太阳能预报的专著。2020、2021、2022年连续入选斯坦福大学全球前2%顶尖科学家榜单(包括终身科学影响力排行榜以及年度科学影响力排行榜)。2021、2022、2023年连续入选由全球学者库发表的全球顶尖前10万科学家榜单。 Dazhi Yang is a professor with the Harbin Institute of Technology. He received the B.Eng., M.Sc., and Ph.D. degrees from the Department of Electrical Engineering, National University of Singapore, Singapore, in 2009, 2012, and 2015, respectively. In 2020, he received support from the National Talent Program, which is a high-prestige research award by the Ministry of Industry and Information Technology of China. In 2017, he became the youngest associate editor of the Solar Energy journal, and has been serving as one of four subject editors of that journal since 2019. He is an active participant in the International Energy Agency, Photovoltaic Power Systems Programme, Task 16. He has published more than 140 journal papers, with a total citation number of 7300 (Google Scholar), an H-index of 46, and an i-10 index of 112. Currently, he has most journal publications on solar forecasting in the world. In 2020, 2021, and 2022, he is listed as one of the world's top 2% scientists (for both single year and career) by Stanford University. In 2021, 2022, and 2023, he is listed as one of the world's top 100,000 scientists published by the Global Scholars Database. 工作经历 标题 起讫时间 2021.03-present 职位/职称 Professor (教授) 工作单位 Harbin Institute of Technology (哈尔滨工业大学) 简单介绍 标题 起讫时间 2015.02-2021.02 职位/职称 Scientist (研究员) 工作单位 Agency for Science, Technology and Research (新加坡科技研究局) 简单介绍 标题 起讫时间 2012.02-2015.01 职位/职称 Research Engineer (工程师) 工作单位 Solar Energy Research Institute of Singapore (新加坡太阳能实验室) 简单介绍 教育经历 标题 Doctor of Philosophy 起讫时间 2012.08-2015.02 所学专业 Electrical Engineering 学习机构 National University of Singapore (新加坡国立大学) 学历 Ph.D. 简单介绍 标题 Master of Science 起讫时间 2010.08-2012.07 所学专业 Electrical Engineering 学习机构 National University of Singapore (新加坡国立大学) 学历 M.Sc. 简单介绍 标题 Bachelor of Engineering 起讫时间 2005.08-2009.07 所学专业 Electrical Engineering 学习机构 National University of Singapore (新加坡国立大学) 学历 B.Eng. 简单介绍 主要任职 任职名称 Subject Editor, Solar Energy 任职时间 2019.01-present 简单介绍 任职名称 Associate Editor, Solar Energy 任职时间 2017.05-2018.12 简单介绍 Research area 名称 Energy forecasting(能源预报) Solar forecasting(太阳能预报) Physical model chain(物理模型链) Predictability(可预测性分析) Load forecasting(负荷预报) Wind forecasting(风能预报) Solar resource assessment(太阳能资源评估) Radiation modeling(太阳辐射建模) Satellite-to-irradiance(天基辐射遥感) Ground-based radiometry(地基辐射测量) Atmospheric science(大气科学) Retrieval(反演) NWP(天气预报模式) Reanalysis(再分析数据) Atmospheric radiation (大气辐射) Aerosol(气溶胶) Power system(电力系统) Microgrid configuration(微网配置) Day-ahead dispatching(日前调度) Hydrogen energy system(氢能系统) Large-scale grid integration(大规模并网) Hierarchical modeling(分层式建模) Firm generation(稳固发电) Battery model predictive control(储能模型预测控制) Battery fault diagnosis(电池故障检测) Spatio-temporal statistics(空间统计) Kriging(克里格法) Covariance function(协方差函数) Data fusion(数据融合) Data analytics(数据分析) R(R语言) Python(Python语言) Team 名称 2023 Team: 前排从左至右:财务通,领导能力突出,比我聪明的没我漂亮,猫咪之友,南理四号种子,开始发力的赠一,影模型和后演 后排从左至右:迟到不早退,南理一号种子,踮脚大王,大管家,杨站长,情谊佰,工大押宝对象,与哈工大双向奔赴的少年,两栖明星王志文,不爱吃花生的闪电,安全帽换电脑 2022 Team: 前排从左至右:幼儿园园长,山东好女婿,火箭探伤和采蘑菇都是一样的,二阶改锥师傅,未来国网总工,《想说爱你不容易》,A类生源靠前,欲拿长发换杰青 后排从左至右:不会且不来实验室的迷之少年,触电数学家,校级青年人才,不毕业不理发,不去西苑吃午饭,大牛比较懒,乒乓球手下败将,买一赠一,年轻不拿国奖 2021 Team: 前排从左至右:潇总,大师姐,钱老板,乒乓顾,严肃魏 后排从左至右:爱斯基摩佳,大老师,数学宇,国网项目技术骨干,昊哥,“这个报不了” Book title Solar Radiation Modeling in Energy Meteorology author Hongrong Shi, Xiang'ao Xia, Dazhi Yang publication time 2026 press CRC Press introduction title Solar Irradiance and Photovoltaic Power Forecasting author Dazhi Yang, Jan Kleissl publication time 2024 press CRC Press introduction Book Chapter title Solar Project Financing, Bankability, and Resource Assessment author Dazhi Yang, Licheng Liu publication time 2020 press Springer International Publishing introduction Journal 名称 Corresponding author: §; Journal IF of a particular year follows the JCR release for the same year 2024 (29) Zhang, X., Yang, D. §, Zhang, H., Liu, B., Li, M., Chu, Y., Wang, J., Xia, X., 2024. Spatial solar forecast verification with the neighborhood method and automatic threshold segmentation. Renewable & Sustainable Energy Reviews, submitted. Liu, Y., Yang, G., Yang, D., Jiang, C.Q., Wang, Y., 2024. Uncovering the real social, ecological, and environmental benefits of floating photovoltaics in China through refined irradiance-to-power conversion modeling. Journal of Cleaner Production, submitted. Yang, G., Yang, D. §, Perez, M.J., Perez, R., Kleissl, J., Remund, J., Pierro, M., Wang, Y., Xia, X., Liu, B., Zhang, H., 2024. Hydrogen production using curtailed electricity of firm photovoltaic plants: Conception, modeling, and optimization. Energy Conversion and Management, submitted. Mayer, M.J., Yang, D., 2024. Optimal place to apply post-processing in the deterministic photovoltaic power forecasting workflow. Applied Energy, submitted. Yang, D. §, Yang, G., Perez, R., Perez, M.J., 2024. Firm hierarchical solar forecasting. IEEE Transactions on Sustainable Energy, submitted. Wang, W., Zhang, Z., Guo, Y., Yang, D. §, Kleissl, J., van der Meer, D., Yang, G., Hong, T., Liu, B., Huang, N., Mayer, M.J., 2024. Economics of physics-based solar forecasting in power system day-ahead scheduling. Renewable & Sustainable Energy Reviews, submitted. Li, B., Yang, L., Fan, X., Yang, D., Shi, H., Xia, X., 2024. Joint retrieval of PM2.5 concentration and aerosol optical depth over China using multi-task learning on Fengyun-4A Advanced Geostationary Radiation Imager data. Advances in Atmospheric Sciences, submitted. Zhang, H., Zhang, X., Yang, D. §, Liu, B., Shuai, Y., Lougou, B.G., Wang, F., 2024. Comparison of non-isothermal and isothermal cycles in a novel methane-assisted two-step thermochemical process. Renewable Energy, submitted. Zhang, G., He, X., Yang, D., Wang, L., Sun, H., Duffy, A., 2024. Contactless soft fault detection for shielded cables via electromagnetic time reversal. Measurement, submitted. Cui, J., Omer, A.M., Tao, N., Zhang, C., Zhang, Q., Ma, Y., Zhang, Z., Yang, D., Zhang, H., Fang, Q., Maldague, X., Sfarra, S., Meng, J., Duan, Y., 2024. Automatic crack segmentation in mural using optical pulsed thermography. Journal of Cultural Heritage, submitted. Chu, Y., Wang, Y., Yang, D., Chen, S., Li, M., 2024. Spatial solar forecasting with remote sensing and deep learning for distributed solar generations: An overview and outlook. Renewable & Sustainable Energy Reviews, major revision. Wang, W., Shi, H., Fu, D., Liu, M., Li, J., Shan, Y., Hong, T., Yang, D. §, Xia, X., 2024. Moving beyond the aerosol climatology of WRF-Solar: A case study over the North China Plain. Weather and Forecasting, accepted. (IF:2.9). Zheng, W., Zhang, S., Omer, A.M., Wu, Z., Tao, N., Zhang, C., Yang, D., Zhang, H., Fang, Q., Maldague, X., Meng, J., Duan, Y., 2024. A novel approach for one-step defect detection and depth estimation using sequenced thermal signal encoding. Nondestructive Testing and Evaluation, in press. https://doi.org/10.1080/10589759.2024.2304719 (IF:2.6). Fu, D., Shi, H., Gueymard, C.A., Yang, D., Zheng, Y., Che, H., Fan, X., Han, X., Gao, L., Bian, J., Duan, M., Xia, X., 2023. A deep-learning and transfer-learning hybrid aerosol retrieval algorithm for FY4-AGRI: Development and verification over Asia. Engineering, accepted. https://doi.org/10.1016/j.eng.2023.09.023 (IF:12.8). Yang, D. §, Xia, X., Mayer, M.J., 2024. A tutorial review of the solar power curve: Regressions, model chains, and their hybridization and probabilistic extensions. Advances in Atmospheric Sciences, in press. (IF:3.9). Song, M., Yang, D. §, Lerch, S., Xia, X., Yagli, G.M., Bright, J.M., Shen, Y., Liu, B., Liu, X., Mayer, M.J., 2024. Non-crossing quantile regression neural network as a calibration tool for ensemble weather forecasts. Advances in Atmospheric Sciences, in press. (IF:3.9). Wang, L., Song, Y., Lyu, C., Yang, D., Yang, G., Shen, D., 2024. Optimization of lithium-ion battery charging strategies from a thermal safety perspective. IEEE Transactions on Transportation Electrification, in press. https://doi.org/10.1109/TTE.2023.3308484 (IF:7.0). Mayer, M.J., Yang, D., 2024. Potential root mean square error skill score. Journal of Renewable and Sustainable Energy, 16, 016501. https://doi.org/10.1063/5.0187044 (IF:2.5) Zhou, Y., Li, S., Li, Q., Wei, F., Yang, D., Liu, J., Yu, D., 2024. Energy savings in direct air-side free cooling data centers: A cross-system modeling and optimization framework. Energy & Buildings, 308, 114003. https://doi.org/10.1016/j.enbuild.2024.114003 (IF:6.7). Ma Lu, S., Yang, D., Anderson, M.C., Zainali, S., Stridh, B., Avelin, A., Campana, P.E., 2024. Photosynthetically active radiation separation model for high-latitude regions in agrivoltaic systems modeling. Journal of Renewable and Sustainable Energy, 16, 013503. https://doi.org/10.1063/5.0181311 (IF:2.5). Shen, D., Yang, D., Lyu, C., Ma, J., Hinds, G., Sun, Q., Du, L., Wang, L., 2024. Multi-sensor multi-mode fault diagnosis for lithium-ion battery packs with time series and discriminative features. Energy, 290, 130151. https://doi.org/10.1016/j.energy.2023.130151 (IF:8.8). Yang, D. §, Kong, Y., Wang, W., Yang, G., Chen, Y., Liu, B., 2024. Comparing calibrated analog and dynamical ensemble solar forecasts. Solar Energy Advances, 4, 100048. https://doi.org/10.1016/j.seja.2023.100048 (IF:TBD). Wang, Y., Song, M., Yang, D., 2024. Local-global feature-based spatio-temporal wind speed forecasting with a sparse and dynamic graph. Energy, 289, 130078. https://doi.org/10.1016/j.energy.2023.130078 (IF:9.0). Zainali, S., Yang, D., Landelius, T., Campana, P.E., 2024. Site adaptation with machine learning for a Northern Europe gridded solar radiation product. Energy and AI, 15, 100331. https://doi.org/10.1016/j.egyai.2023.100331 (IF:TBD). Zhang, W., Archana, V., Gandhi, O., Rodríguez-Gallegos, C.D., Quan, H., Yang, D., Tan, C.-W., Srinivasan, D., 2024. SolarEdge: PV soiling power loss estimation at the edge using surveillance cameras. IEEE Transactions on Sustainable Energy, 15(1), 556–566. https://doi.org/10.1109/TSTE.2023.3320690 (IF:8.8). Chu, Y., Yang, D. §, Yu, H., Zhao, X., Li, M., 2024. Can end-to-end data-driven models outperform traditional semi-physical models in separating 1-min irradiance? Applied Energy, 356, 122434. https://doi.org/10.1016/j.apenergy.2023.122434 (IF:11.2) Gueymard, C.A., Coimbra, C.F.M., Habte, A., Michalsky, J., Perez, R., Peterson, J., Renné, D., Riihimaki, L., Stoffel, T., Yang, D., 2024. In Memoriam: Dr. Frank E. Vignola (1945–2023), Solar Energy, 267, 112213. https://doi.org/10.1016/j.solener.2023.112213 (IF: 6.7). Gandhi, O., Zhang, W., Kumar, D.S., Rodríguez-Gallegos, C.D., Yagli, G.M., Yang, D., Reindl, T., Srinivasan, D., 2024. The economics of solar forecasting. Renewable & Sustainable Energy Reviews, 189, 113915. https://doi.org/10.1016/j.rser.2023.113915 (IF:15.9) Yang, D. §, Gu, Y., Mayer, M.J., Gueymard, C.A., Wang, W., Kleissl, J., Li, M., Chu, Y., Bright, J.M., 2024. Regime-dependent 1-min irradiance separation model with climatology clustering. Renewable & Sustainable Energy Reviews, 189, 113992. https://doi.org/10.1016/j.rser.2023.113992 (IF:15.9) 2023 (33) Remund, J., Perez, R., Perez, M., Pierro, M., Yang, D., 2023. Firm PV power generation: Overview and outlook. Solar RRL, 7, 2300497. https://doi.org/10.1002/solr.202300497 (IF:7.9). Wang, Q.-G., Lim, L.H.I., Ye, Z., Nie, Z.-Y., Yang, D., 2023. LQR approach to robust stabilization of state space systems with matched uncertainties. ISA Transactions, 142, 420–426. https://doi.org/10.1016/j.isatra.2023.07.034 (IF:7.3). Xia, X., Fu, D., Shao, W., Jiang, R., Wu, S., Zhang, P., Yang, D., Xia, X., 2023. Retrieving precipitable water vapor over land from satellite passive microwave radiometer measurements using automated machine learning. Geophysical Research Letter, 50(22), e2023GL105197. https://doi.org/10.1029/2023GL105197 (IF:5.2). Zhang, H., Zhang, X., Yang, D. §, Shuai, Y., Lougou, B.G., Pan, Q., Wang, F., 2023. Application of CoFe2O4–NiO nanoparticle-coated foam-structured material in a high-flux solar thermochemical reactor. Science China Technological Sciences, 66(11), 3276–3286. https://doi.org/10.1007/s11431-023-2397-7 (IF:4.6). Jiang, G., Wang, X., Hu, J., Wang, Y., Li, X., Yang, D., Mostacci, M., Sfarra, S., Maldague, X., Zhang, H., 2023. Simulation-aided infrared thermography with decomposition-based noise reduction for detecting defects in ancient polyptychs. Heritage Science, 11(1), 223. https://doi.org/10.1186/s40494-023-01040-0 (IF:2.2). Yang, D. §, 2023. The future of solar forecasting in China. Journal of Renewable and Sustainable Energy, 15(5), 052301. https://doi.org/10.1063/5.0172315 (IF:2.5). Huang, C., Shi, H., Yang, D., Gao, L., Zhang, P., Fu, D., Xia, X., Chen, Q., Yuan, Y., Liu, M., Hu, B., Lin, K., Li, X., 2023. Retrieval of sub-kilometer resolution solar irradiance from Fengyun-4A satellite using a region-adapted Heliosat-2 method. Solar Energy, 264, 112038. https://doi.org/10.1016/j.solener.2023.112038 (IF: 6.7). Yang, G., Yang, D. §, Lyu, C., Wang, W., Huang, N., Kleissl, J., Perez, M.J., Perez, R., Srinivasan, D., 2023. Implications of future price trends and interannual variability on firm solar power delivery with overbuilding and battery storage. IEEE Transactions on Sustainable Energy, 14(4), 2036–2048. https://doi.org/10.1109/TSTE.2023.3274109 (IF:8.8). Mayer, M.J., Yang, D., Szintai, B., 2023. Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME. Applied Energy, 352, 121958. https://doi.org/10.1016/j.apenergy.2023.121958 (IF:11.2). Yang, D. §, Kleissl, J., 2023. Summarizing ensemble NWP forecasts for grid operators: Consistency, elicitability, and economic value. International Journal of Forecasting, 39(4), 1640–1654. https://doi.org/10.1016/j.ijforecast.2022.08.002 (IF:7.9). Xiang, S., Omer, A.M., Li, M., Yang, D., Osman, A., Han, B., Gao, Z., Hu, H., Ibarra-Castanedo, C., Maldague, X., Fang, Q., Sfarra, S., Zhang, H., Duan, Y., 2023. A reliability study on automated defect assessment in optical pulsed thermography. Infrared Physics & Technology, 134, 104878. https://doi.org/10.1016/j.infrared.2023.104878 (IF:3.3). Duan, Y., Shao, T., Tao, Y., Hu, H., Han, B., Cui, J., Yang, K., Sfarra, S., Sarasini, F., Santulli, C., Osman, A., Mross, A., Zhang, M., Yang, D., Zhang, H., 2023. Automatic air-coupled ultrasound detection of impact damages in fiber-reinforced composites based on one-dimension deep learning models. Journal of Nondestructive Evaluation, 42(3), 79. https://doi.org/10.1007/s10921-023-00988-0 (IF:2.8). Shen, D., Yang, D., Lyu, C., Hinds, G., Wang, L., Bai, M., 2023. Detection and quantitative diagnosis of micro-short-circuit faults in lithium-ion battery packs considering cell inconsistency. Green Energy and Intelligent Transportation, 2(5), 100109. https://doi.org/10.1016/j.geits.2023.100109 (IF:TBD). Wang, L., Song, Y., Lyu, C., Yang, D., Wang, W., 2023. Structure optimization of the battery thermal management system based on surrogate modeling of approximate and detailed simulations. Applied Thermal Engineering, 235, 121289. https://doi.org/10.1016/j.applthermaleng.2023.121289 (IF:6.4). Yang, D. §, Yang, G., Liu, B., 2023. Combining quantiles of calibrated solar forecasts from ensemble numerical weather prediction. Renewable Energy, 215, 118993. https://doi.org/10.1016/j.renene.2023.118993 (IF:8.7). Shi, H., Yang, D. §, Wang, W., Fu, D., Gao, L., Zhang, J., Hu, B., Shan, Y., Zhang, Y., Bian, Y., Chen, H., Xia, X., 2023. First estimation of high-resolution solar photovoltaic resource maps over China with Fengyun-4A satellite and machine learning. Renewable & Sustainable Energy Reviews, 184, 113549. https://doi.org/10.1016/j.rser.2023.113549 (IF:15.9). Zhang, Z., Zhang, H., Hu, J., Sfarra, S., Mostacci, M., Wang, Y., Yang, D., Maldague, X., Niu, D., Duan, Y., 2023. Defect detection: An improved YOLOX network applied to a replica of “The Birth of Venus” by Botticelli. Journal of Cultural Heritage, 62, 404–411. https://doi.org/10.1016/j.culher.2023.06.018 (IF:3.1). Wang, L., Song, Y., Lyu, C., Yang, D., Wang, W., Ge, Y., 2023. Online maximum discharge power prediction for lithium-ion batteries with thermal safety constraints. Journal of Energy Storage, 71, 108041. https://doi.org/10.1016/j.est.2023.108041 (IF:9.4) Bai, M., Lyu, C., Yang, D., 2023. Quantification of lithium plating in lithium-ion batteries based on impedance spectrum and artificial neural network. Batteries, 9(7), 350. https://doi.org/10.3390/batteries9070350 (IF:4.0) Ding, M., Li, H., Zhao, L., Yang, D., 2023. A high-performance isolated bridgeless resonant SEPIC PFC converter at medium line frequencies. IEEE Transactions on Power Electronics, 38(8), 10040–10051. https://doi.org/10.1109/TPEL.2023.3279610 (IF: 6.7). Lyu, C., Song, Y., Yang, D., Wang, W., Ge, Y., Wang, L., 2023. Online prediction for heat generation rate and temperature of lithium-ion battery using multi-step-ahead extended Kalman filtering. Applied Thermal Engineering, 231, 120890. https://doi.org/10.1016/j.applthermaleng.2023.120890 (IF:6.4). Liu, B., Yang, D. §, Mayer, M.J., Coimbra, C.F.M., Kleissl, J., Kay, M., Wang, W., Bright, J.M., Xia, X., Lv, X., Srinivasan, D., Wu, Y., Bayer, H.G., Yagli, G.M., Shen, Y., 2023. Predictability and forecast skill of solar irradiance over the contiguous United States. Renewable & Sustainable Energy Reviews, 182, 113359. https://doi.org/10.1016/j.rser.2023.113359 (IF:15.9). Yang, G., Zhang, H., Wang, W., Liu, B., Lyu, C., Yang, D., 2023. Capacity optimization and economic analysis of PV–hydrogen hybrid system with physical solar power curve modeling. Energy Conversion and Management, 288, 117128. https://doi.org/10.1016/j.enconman.2023.117128 (IF:10.4). Li, Q., Zhang, H., Hu, J., Sfarra, S., Mostacci, M., Yang, D., Georges, M., Vavilov, V.P., Maldague, X.P.V., 2023. Using the unsupervised mixture of Gaussian models for multispectral non-destructive evaluation of the replica of Botticelli’s “The Birth of Venus”. Journal of Nondestructive Evaluation, 42, 38. https://doi.org/10.1007/s10921-023-00947-9 (IF:2. 8). Zhang, G., He, X., Wang, L., Yang, D., Chang, K., Duffy, A., 2023. Step frequency TR-MUSIC for soft fault detection and location in coaxial cable. IEEE Transactions on Instrumentation & Measurement, 72, 3511611. https://doi.org/10.1109/TIM.2023.3261911 (IF:5.6). Shen, D., Lyu, C., Yang, D., Hinds, G., Wang, L., 2023. Connection fault diagnosis for lithium-ion battery packs onboard electric vehicles using broad belief network. Energy, 274, 127291. https://doi.org/10.1016/j.energy.2023.127291 (IF:9.0). Zhang, G., Chen, X., Yang, D., Wang, L., He, X., Zhang, Z., 2023. Multi-physics coupling simulation technique for phase stable cables. Electronics, 12(7), 1602. https://doi.org/10.3390/electronics12071602 (IF:2.9). Mayer, M.J., Yang, D., 2023. Calibration of deterministic NWP forecasts and its impact on verification. International Journal of Forecasting, 39(2), 981–991. https://doi.org/10.1016/j.ijforecast.2022.03.008 (IF:7.9) Zhang, G., Chen, X., Yang, D., Duffy, A., Li, M., Wang, L., 2023. Thermal effects on crosstalk of multiconductor PVC cables and estimation of thermal accelerating ratios. IEEE Transactions on Electromagnetic Compatibility, 65(1), 323–333. https://doi.org/10.1109/TEMC.2022.3224501 (IF:2.1). Zhang, H., Zhang, X., Yang, D. §, Shuai, Y., Lougou, B.G., Pan, Q., Wang, F., 2023. Selection of iron-based oxygen carriers for two-step solar thermochemical splitting of carbon dioxide. Energy Conversion and Management, 279, 116772. https://doi.org/10.1016/j.enconman.2023.116772 (IF:10.4). Ju, X., Cheng, Y., Du, B., Yang, M., Yang, D., Cui, S., 2023. AC loss analysis and measurement of a hybrid transposition hairpin winding for EV traction machines driven by SiC inverter. IEEE Transactions on Industrial Electronics, 70(4), 3525–3536. https://doi.org/10.1109/TEC.2022.3183399 (IF:7.7). Fu, D., Gueymard, C.A., Yang, D., Zheng, Y., Xia, X., Bian, J., 2023. Improving aerosol optical depth retrievals from Himawari-8 with ensemble learning enhancement: Validation over Asia. Atmospheric Research, 284, 106624. https://doi.org/10.1016/j.atmosres.2023.106624 (IF:5.5). Mayer, M.J., Yang, D., 2023. Pairing ensemble numerical weather prediction with ensemble physical model chain for probabilistic photovoltaic power forecasting. Renewable & Sustainable Energy Reviews, 175, 113171. https://doi.or/10.1016/j.rser.2023.113171 (IF:15.9). 2022 (20) You, J., Fu, R., Liang, H. Yang, D., Lin, Y., Dinavahi, V., 2022. Energy conservation model for electromechanical transient characteristics of electromagnetic actuators. IEEE Transactions on Energy Conversion, 37(4), 2535–2545. https://doi.org/10.1109/TEC.2022.3183399 (IF:4.9) Wang, W., Yang, D. §, Hong, T., Kleissl, J., 2022. An archived dataset from the ECMWF Ensemble Prediction System for probabilistic solar power forecasting. Solar Energy, 248, 64–75. https://doi.org/10.1016/j.solener.2022.10.062 (IF:6.7). Mayer, M.J., Yang, D., 2022. Probabilistic photovoltaic power forecasting using a calibrated ensemble of model chains. Renewable & Sustainable Energy Reviews, 168, 112821. https://doi.org/10.1016/j.rser.2022.112821 (IF:15.9). Yang, D. §, Wang, W., Xia, X., 2022. A concise overview on solar resource assessment and forecasting. Advances in Atmospheric Sciences, 39(8), 1239–1251. https://doi.org/10.1007/s00376-021-1372-8 (IF:5.8). Yang, D. §, 2022. Correlogram, predictability error growth, and bounds of mean square error of solar irradiance forecasts. Renewable & Sustainable Energy Reviews, 167, 112736. https://doi.org/10.1016/j.rser.2022.112736 (IF:15.9). Hu, J., Zhang, H., Sfarra, S., Gargiulo, G., Avdelidis, N.P., Zhang, M., Yang, D., Maldague, X., 2022. Non-destructive imaging of marqueteries based on a new infrared-terahertz fusion technique. Infrared Physics & Technology, 125, 104277. https://doi.org/10.1016/j.infrared.2022.104277 (IF:3.3). Sun, X., Yang, D., Gueymard, C.A., Bright, J.M., Wang, P., 2022. Effects of spatial scale of atmospheric reanalysis data on clear-sky surface radiation modeling in tropical climates: A case study for Singapore. Solar Energy, 241, 525–537. https://doi.org/10.1016/j.solener.2022.06.001 (IF:6.7). Huang, N., He, Q., Qi, J., Hu, Q., Wang, R., Cai, G., Yang, D., 2022. Multinodes interval electric vehicle day-ahead charging load forecasting based on joint adversarial generation. International Journal of Electrical Power and Energy Systems, 143, 108404. https://doi.org/10.1016/j.ijepes.2022.108404 (IF:5.2) Lyu, C., Song, Y., Yang., D., Wang, W., Zhu, S., Ge, Y., Wang, L., 2022. Surrogate model of liquid cooling system for lithium-ion battery using extreme gradient boosting. Applied Thermal Engineering, 213, 118675. https://doi.org/10.1016/j.applthermaleng.2022.118675 (IF:6.4) Voyant, C., Notton, G., Duchaud, J.-L., Gutiérrez, L.A.G., Bright, J.M., Yang, D., 2022. Benchmarks for solar radiation time series forecasting. Renewable Energy, 191, 747–762. https://doi.org/10.1016/j.renene.2022.04.065 (IF:8.7). Yang, D. §, Wang, W., Bright, J.M., Voyant, C., Notton, G., Zhang, G., Lyu, C., 2022. Verifying operational intra-day solar forecasts from ECMWF and NOAA. Solar Energy, 236, 743–755. https://doi.org/10.1016/j.solener.2022.03.004 (IF:6.7). Fu, D., Liu, M., Yang, D. §, Che, H., Xia, X., 2022. Influences of atmospheric reanalysis on the accuracy of clear-sky irradiance estimates: Comparing MERRA-2 and CAMS. Atmospheric Environment, 277, 119080. https://doi.org/10.1016/j.atmosenv.2022.119080 (IF:5.0). Wang, W., Yang, D. §, Huang, N., Lyu, C., Zhang, G., Han, X., 2022. Irradiance-to-power conversion based on physical model chain: An application on the optimal configuration of multi-energy microgrid in cold climate. Renewable & Sustainable Energy Reviews, 161, 112356. https://doi.org/10.1016/j.rser.2022.112356 (IF:15.9). Yang, D. §, Wang, W., Gueymard, C.A., Hong, T., Kleissl, J., Huang, J., Perez, M.J., Perez, R., Bright, J.M., Xia, X., van der Meer, D., Peters, I.M., 2022. A review of solar forecasting and its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality. Renewable & Sustainable Energy Reviews, 161, 112348. https://doi.org/10.1016/j.rser.2022.112348 (IF:15.9). Yang, D. §, 2022. Estimating 1-min beam and diffuse irradiance from the global irradiance: A review, a benchmarking dataset, and an extensive worldwide validation of latest separation models at 126 stations. Renewable & Sustainable Energy Reviews, 159, 112195. https://doi.org/10.1016/j.rser.2022.112195 (IF:15.9). Yang, D. §, Wang, W., Hong, T., 2022. A historical weather forecast dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF) for energy forecasting. Solar Energy, 232, 263–274. https://doi.org/10.1016/j.solener.2021.12.011 (IF:6.7). Yagli, G.M., Yang, D. §, Srinivasan, D., 2022. Ensemble solar forecasting and post-processing with neighboring satellite pixels. Renewable & Sustainable Energy Reviews, 155, 111909. https://doi.org/10.1016/j.rser.2021.111909 (IF:15.9). Zhang, G., Yang, D. §, Galanis, G., Androulakis, E., 2022. Solar forecasting with hourly updated numerical weather prediction. Renewable & Sustainable Energy Reviews, 154, 111768. https://doi.org/10.1016/j.rser.2021.111768 (IF:15.9). Yang, D. §, Yagli, G.M., Srinivasan, D., 2022. Sub-minute probabilistic solar forecasting for real-time stochastic simulations. Renewable & Sustainable Energy Reviews, 153, 111736. https://doi.org/10.1016/j.rser.2021.111736 (IF:15.9). Zhang, H., Shuai, Y., Lougou, B.G., Jiang, B., Yang, D., Pan, Q., Wang, F., Huang, X., 2022. Effects of foam structure on thermochemical characteristics of porous-filled solar reactor. Energy, 239, 122219. https://doi.org/10.1016/j.energy.2021.122219 (IF: 9.0). 2021 (7) Yang, D. §, 2021. Temporal-resolution cascade model for separation of 1-min beam and diffuse irradiance. Journal of Renewable and Sustainable Energy, 13(5), 056101. https://doi.org/10.1063/5.0067997 (IF:2.847). Yang, X., Yang, D. §, Bright, J.M., Yagli, G.M., Wang, P., 2021. On predictability of solar irradiance. Journal of Renewable and Sustainable Energy, 13(5), 056501. https://doi.org/10.1063/5.0056918 (IF:2.847). Yang, D. §, Gueymard, C.A., 2021. Probabilistic post-processing of gridded atmospheric variables and its application to site adaptation of shortwave solar radiation. Solar Energy, 225, 427–443. https://doi.org/10.1016/j.solener.2021.05.050 (IF:7.188). Yang, D. §, Li, W., Yagli, G.M., Srinivasan, D., 2021. Operational solar forecasting for grid integration: Standards, challenges, and outlook. Solar Energy, 224, 930–937. https://doi.org/10.1016/j.solener.2021.04.002 (IF:7.188). Yang, D. §, Gueymard, C.A., 2021. Probabilistic merging and verification of monthly gridded aerosol products. Atmospheric Environment, 247, 118146. https://doi.org/10.1016/j.atmosenv.2020.118146 (IF:5.755). Yang, D. §, van der Meer, D., 2021. Post-processing in solar forecasting: Ten overarching thinking tools. Renewable & Sustainable Energy Reviews, 140, 110735. https://doi.org/10.1016/j.rser.2021.110735 (IF:16.799). Yang, D. §, 2021. Validation of the 5-min irradiance from the National Solar Radiation Database (NSRDB). Journal of Renewable and Sustainable Energy, 13(1), 016101. https://doi.org/10.1063/5.0030992 (IF:2.847). 2020 (20) Frimane, A., Bright, J.M., Yang, D., Ouhammou, B., Aggour, M., 2020. Dirichlet downscaling model for synthetic solar irradiance time series. Journal of Renewable and Sustainable Energy, 12(6), 063702. https://doi.org/10.1063/5.0028267 (IF:2.219). Hong, T., Pinson, P., Wang, Y., Weron, R., Yang, D., Zareipour, H., 2020. Energy forecasting: A review and outlook. IEEE Open Access Journal of Power and Energy, 7, 376–388. https://doi.org/10.1109/OAJPE.2020.3029979 (Best paper award; Invited review; IF:4.255). Quan, H., Khosravi, A., Yang, D., Srinivasan, D., 2020. A survey of computational intelligence techniques for wind power uncertainty quantification in smart grids. IEEE Transactions on Neural Networks and Learning Systems 31(11), 4582–4599. https://doi.org/10.1109/TNNLS.2019.2956195 (IF:10.451). Yang, D. §, 2020. Quantifying the spatial scale mismatch between satellite-derived solar irradiance and in situ measurements: A case study using CERES synoptic surface shortwave flux and the Oklahoma Mesonet. Journal of Renewable and Sustainable Energy 12(5), 056104. https://doi.org/10.1063/5.0025771 (IF:2.219). Yagli, G.M., Yang, D. §, Srinivasan, D., 2020. Reconciling solar forecasts: Probabilistic forecasting with homoscedastic Gaussian errors on a geographical hierarchy. Solar Energy 210, 59–67. https://doi.org/10.1016/j.solener.2020.06.005 (Special Issue on Grid Integration, IF:5.742). Yang, D. §, 2020. Reconciling solar forecasts: Probabilistic forecast reconciliation in a non- parametric framework. Solar Energy 210, 49–58. https://doi.org/10.1016/j.solener.2020.03.095 (Special Issue on Grid Integration, IF:5.742). Yang, D. §, 2020. Comment: Operational aspects of solar forecasting. Solar Energy 210, 38–40. https://doi.org/10.1016/j.solener.2020.04.014 (Special Issue on Grid Integration, IF:5.742). Yang, D. §, Alessandrini, S., Antonanzas, J., Antonanzas-Torres, F., Badescu, V., Beyer, H.G., Blaga, R., Boland, J., Bright, J.M., Coimbra, C.F.M., David, M., Frimane, A, Gueymard, C.A., Hong, T., Kay, M.J., Killinger, S., Kleissl, J., Lauret, P., Lorenz, E., van der Meer, D., Paulescu, M., Perez., R., Perpinan-Lamigueiro, O., Peters, I.M., Reikard, G., Renne, D., Saint-Drenan, Y.-M., Shuai, Y., Urraca, R., Verbois, H., Vignola, F., Voyant, C., Zhang, J., 2020. Verification of deterministic solar forecasts. Solar Energy 210, 20–37. https://doi.org/10.1016/j.solener.2020.04.019 (Special Issue on Grid Integration, IF:5.742). Yang, D. §, Bright, J.M., 2020. Worldwide validation of 8 satellite-derived and reanalysis solar radiation products: A preliminary evaluation and overall metrics for hourly data over 27 years. Solar Energy 210, 3–19. https://doi.org/10.1016/j.solener.2020.04.016 (Special Issue on Grid Integration, IF:5.742). Li, W., Srinivasan, D., Zhang, J., Yang, D. §, 2020. Preface of progress in solar energy special issue: Grid integration. Solar Energy 210, 1–2. https://doi.org/10.1016/j.solener.2020.08.093 (Special Issue on Grid Integration, IF:5.742). Yang, D. §, Gueymard, C.A., Ensemble model output statistics for the separation of direct and diffuse components from 1-min global irradiance. Solar Energy 208, 591–603. https://doi.org/10.1016/j.solener.2020.05.082 (IF:5.742). Yagli, G.M., Yang, D. §, Srinivasan, D., 2020. Ensemble solar forecasting using data-driven models with probabilistic post-processing through GAMLSS. Solar Energy 208, 612–622. https://doi.org/10.1016/j.solener.2020.07.040 (IF:5.742). Yang, D. §, van der Meer, D., Munkhammar, J., 2020. Probabilistic solar forecasting benchmarks on a standardized dataset at Folsom, California. Solar Energy 206, 628–639. https://doi.org/10.1016/j.solener.2020.05.020 (IF:5.742). Yang, D. §, 2020. Ensemble model output statistics as a probabilistic site-adaptation tool for solar irradiance: A revisit. Journal of Renewable and Sustainable Energy 12(3), 036101. https://doi.org/10.1063/5.0010003 (IF:2.219). van der Meer, D., Yang, D., Widen, J., Munkhammar, J., 2020. Clear-sky index space-time trajectories from probabilistic solar forecasts: Comparing promising copulas. Journal of Renewable and Sustainable Energy 12(2), 026102. https://doi.org/10.1063/1.5140604 (Featured Article, IF:2.219). Gueymard, C.A., Yang, D. §, 2020. Worldwide validation of CAMS and MERRA-2 reanalysis aerosol optical depth products using 15 years of AERONET observations. Atmospheric Environment 225, 117216. https://doi.org/10.1016/j.atmosenv.2019.117216 (IF:4.798). Yang, D. §, 2020. Choice of clear-sky model in solar forecasting. Journal of Renewable and Sustainable Energy 12(2), 026101. https://doi.org/10.1063/5.0003495 (Featured Article, IF:2.219). Quan, H., Yang, D. §, 2020. Probabilistic solar irradiance transposition models. Renewable & Sustainable Energy Reviews 125, 109814. https://doi.org/10.1016/j.rser.2020.109814 (IF:14.982). Yang, D. §, 2020. Ensemble model output statistics as a probabilistic site-adaptation tool for satellite-derived and reanalysis solar irradiance. Journal of Renewable and Sustainable Energy 12(1), 016102. https://doi.org/10.1063/1.5134731 (Featured Article, IF:2.219). Yagli, G.M., Yang, D. §, Gandhi, O., Srinivasan, D., 2020. Can we justify producing univariate machine-learning forecasts with satellite-derived solar irradiance? Applied Energy 259, 114122. https://doi.org/10.1016/j.apenergy.2019.114122 (IF:9.746). 2019 (18) Yang, D. §, 2019. Making reference solar forecasts with climatology, persistence, and their optimal convex combination. Solar Energy 193, 981–985. https://doi.org/10.1016/j.solener.2019.10.006 (IF:4.608). Yang, D. §, Kleissl, J., Wu, E., 2019. Operational solar forecasting for the real-time market. International Journal of Forecasting 35(4), 1499–1519. https://doi.org/10.1016/j.ijforecast.2019.03.009 (Special Section, IF:2.825). Yang, D. §, 2019. Ultra-fast analog ensemble using kd-tree. Journal of Renewable and Sustainable Energy 11(5), 053703. https://doi.org/10.1063/1.5124711 (Editor’s Pick, IF:1.575). Yang, D. §, 2019. Standard of reference in operational day-ahead deterministic solar forecasting. Journal of Renewable and Sustainable Energy 11(5), 053702. https://doi.org/10.1063/1.5114985 (Featured Article, Special Collection, IF:1.575). Yang, D. §, Gueymard, C.A., 2019. Producing high-quality solar resource maps by integrating high- and low-accuracy measurements using Gaussian processes. Renewable & Sustainable Energy Reviews 113, 109260. https://doi.org/10.1016/j.rser.2019.109260 (IF:12.110). Feng, C., Yang, D., Hodge, B.M., Zhang, J., 2019. OpenSolar: Promoting the openness and accessibility of diverse public solar datasets. Solar Energy 188, 1369–1379. https://doi.org/10.1016/j.solener.2019.07.016 (IF:4.608). Yang, D. §, Zhang, A.N., 2019. Impact of information sharing and forecast combination on fast-moving-consumer-goods demand forecast accuracy. Information 10(8), 260. https://doi.org/10.3390/info10080260. Yang, D. §, 2019. SolarData package update v1.1: R functions for easy access of Baseline Surface Radiation Network (BSRN). Solar Energy 188, 970–975. https://doi.org/10.1016/j.solener.2019.05.068 (IF:4.608). Yang, D. §, 2019. Post-processing of NWP forecasts using ground or satellite-derived data through kernel conditional density estimation. Journal of Renewable and Sustainable Energy 11(2), 026101. https://doi.org/10.1063/1.5088721 (Special Collection, IF:1.575). Yang, D. §, Boland, J., 2019. Satellite-augmented diffuse solar radiation separation models. Journal of Renewable and Sustainable Energy 11(2), 023705. https://doi.org/10.1063/1.5087463 (Editor’s Pick, Special Collection, IF:1.575). Yang, D. §, 2019. A guideline to solar forecasting research practice: Reproducible, operational, probabilistic or physically-based, ensemble, and skill (ROPES). Journal of Renewable and Sustainable Energy 11(2), 022701. https://doi.org/10.1063/1.5087462 (Featured Article, Special Collection, Review, IF:1.575). Yang, D. §, Perez, R., 2019. Can we gauge forecasts using satellite-derived solar irradiance? Journal of Renewable and Sustainable Energy 11(2), 023704. https://doi.org/10.1063/1.5087588 (Featured Article, Special Collection, IF:1.575). Yang, D. §, Alessandrini, S., 2019. An ultra-fast way of searching weather analogs for renewable energy forecasting. Solar Energy 185 255–261. https://doi.org/10.1016/j.solener.2019.03.068 (IF:4.608). Yang, D. §, 2019. A universal benchmarking method for probabilistic solar irradiance forecasting. Solar Energy 184, 410–416. https://doi.org/10.1016/j.solener.2019.04.018 (IF:4.608). Yagli, G.M., Yang, D. §, Srinivasan, D., 2019. Automatic hourly solar forecasting using machine learning models. Renewable & Sustainable Energy Reviews 105, 487–498. https://doi.org/10.1016/j.rser.2019.02.006 (IF:12.110). Yang, D. §, 2019. On post-processing day-ahead NWP forecasts using Kalman filtering. Solar Energy 182, 179–181. https://doi.org/10.1016/j.solener.2019.02.044 (IF:4.608). Yagli, G.M., Yang, D. §, Srinivasan, D., 2019. Reconciling solar forecasts: Sequential reconciliation. Solar Energy 179, 391–397. https://doi.org/10.1016/j.solener.2018.12.075 (IF:4.608). Lim, L.H.I., Yang, D., 2019. High-Precision XY stage motion control of industrial microscope. IEEE Transactions on Industrial Electronics 66, 1984–1992. https://doi.org/10.1109/TIE.2018.2838102 (IF:7.515) 2018 (10) Yang, D. §, 2018. Ultra-fast preselection in lasso-type spatio-temporal solar forecasting problems. Solar Energy 176, 788–796. https://doi.org/10.1016/j.solener.2018.08.041 (IF:4.374). Yang, D. §, 2018. A correct validation of the National Solar Radiation Data Base (NSRDB). Renewable & Sustainable Energy Reviews 97, 152–155. https://doi.org/10.1016/j.rser.2018.08.023 (IF:9.184). Yang, D. §, 2018. SolarData: An R package for easy access of publicly available solar datasets. Solar Energy 171, A3–A12. https://doi.org/10.1016/j.solener.2018.06.107 (The very first Data Article of Solar Energy, IF:4.374). Yang, D. §, Gueymard, C.A., Kleissl, J., 2018. Editorial: Submission of Data Article is now open. Solar Energy 171, A1-A2. https://doi.org/10.1016/j.solener.2018.07.006 (Editorial, IF:4.374). Yang, D. §, 2018. Spatial prediction using kriging ensemble. Solar Energy 171, 997–982. https://doi.org/10.1016/j.solener.2018.06.105 (IF:4.374). Yang, D. §, 2018. Kriging for NSRDB PSM version 3 satellite-derived solar irradiance. Solar Energy 171, 876–883. https://doi.org/10.1016/j.solener.2018.06.055 (IF:4.374). Rodríguez-Gallegos, C.D., Yang, D., Gandhi, O., Bieri, M., Reindl, T., Panda, S.K., 2018. A multi-objective and robust optimization approach for sizing and placement of PV and batteries in off-grid systems fully operated by diesel generators: An Indonesian case study. Energy 160, 410–429. https://doi.org/10.1016/j.energy.2018.06.185 (IF:4.968) Yang, D. §, Kleissl, J., Gueymard, C.A., Pedro, H.T.C., Coimbra, C.F.M., 2018. History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining. Solar Energy 168, 60–101. https://doi.org/10.1016/j.solener.2017.11.023 (Invited review, IF:4.374). Yang, D. §, Dong, Z., 2018. Operational photovoltaics power forecasting using seasonal time series ensemble. Solar Energy 166, 529–541. https://doi.org/10.1016/j.solener.2018.02.011 (IF:4.374). Rodríuez-Gallegos, C.D., Gandhi, O., Yang, D., Alvarez-Alvarado, M.S., Zhang, W., Reindl, T., Panda, S.K., 2018. A siting and sizing optimization approach for PV–battery-diesel hybrid systems. IEEE Transactions on Industry Applications 54(3), 2637–2645. https://doi.org/10.1109/TIA.2017.2787680 (IF:2.937). 2017 (4) Yang, D. §, Quan, H., Disfani, V.R., Rodríguez-Gallegos, C.D., 2017. Reconciling solar forecasts: Temporal hierarchy. Solar Energy 158, 332–346. https://doi.org/10.1016/j.solener.2017.09.055 (IF:4.374). Yang, D. §, 2017. On adding and removing sensors in a solar irradiance monitoring network for areal forecasting and PV system performance evaluation. Solar Energy 155, 1417–1430. https://doi.org/10.1016/j.solener.2017.07.061 (IF:4.374) Yang, D. §, Dong, Z., Lim, L.H.I., Liu, L., 2017. Analyzing big time series data in solar engineering using features and PCA. Solar Energy 153, 317–328. https://doi.org/10.1016/j.solener.2017.05.072 (IF:4.374) Yang, D. §, Quan, H., Disfani, V.R., Liu, L., 2017. Reconciling solar forecasts: Geographical hierarchy. Solar Energy 146, 276–286. https://doi.org/10.1016/j.solener.2017.02.010 (IF:4.374) 2016 (3) Yang, D. §, 2016. Solar radiation on inclined surfaces: Corrections and benchmarks. Solar Energy 136, 288–302. http://dx.doi.org/10.1016/j.solener.2016.06.062 (Review, IF:4.018) Sharma, V., Yang, D., Walsh, W.M., Reindl, T., 2016. Short term solar irradiance forecasting using a mixed wavelet neural network. Renewable Energy 90, 481–492. http://dx.doi.org/10.1016/j.renene.2016.01.020 (IF:4.357) Nobre, A., Karthik, S., Liu, H., Yang, D., Martins, F.R., Pereira, E.B., Ruther, R., Reindl, T., Peters, I.M., 2016. On the impact of haze on the yield of photovoltaic systems in Singapore. Renewable Energy 89, 389–400. http://dx.doi.org/10.1016/j.renene.2015.11.079 (IF:4.357) 2015 (10) Aryaputera, A.W., Yang, D. §, Zhao, L., Walsh, W.M., 2015. Very short-term irradiance forecasting at unobserved locations using spatio-temporal kriging. Solar Energy 122, 1266– 1278. http://dx.doi.org/10.1016/j.solener.2015.10.023 (IF:3.685) Yang, D. §, 2015. Simulation study of parameter estimation and measurement planning on photovoltaics degradation. International Journal of Energy and Statistics 3(3), 1550013. http://dx.doi.org/10.1142/S2335680415500131 Yang, D. §, Chen, N., 2015. Expanding existing solar irradiance monitoring network using entropy. IEEE Transactions on Sustainable Energy 6(4), 1208–1215. http://dx.doi.org/10.1109/TSTE.2015.2421734 (IF:3.727) Dong, Z., Yang, D., Reindl, T., Walsh, W.M., 2015. A novel hybrid approach based on self- organizing maps, support vector regression and particle swarm optimization to forecast solar irradiance. Energy 82, 570–577. http://dx.doi.org/10.1016/j.energy.2015.01.066 (IF:4.292) Yang, D. §, Ye, Z., Lim, L.H.I., Dong, Z., 2015. Very short term irradiance forecasting using the lasso. Solar Energy 114, 314–326. https://doi.org/10.1016/j.solener.2015.01.016 (IF:3.685) Lim, L.H.I., Ye, Z., Ye, J., Yang, D., Du, H., 2015. A linear identification of diode models from single I–V characteristics of PV panels. IEEE Transactions on Industrial Electronics 62(7), 4181–4193. http://dx.doi.org/10.1109/TIE.2015.2390193 (IF:6.383) Yang, D. §, Sharma, V., Ye, Z., Lim, L.H.I., Zhao, L., Aryaputera, A.W., 2015. Forecasting of global horizontal irradiance by exponential smoothing, using decompositions. Energy 81, 111–119. http://dx.doi.org/10.1016/j.energy.2014.11.082 (IF:4.292) Aryaputera, A.W., Yang, D., Walsh, W.M., 2015. Day-ahead solar irradiance forecasting in a tropical environment. Journal of Solar Energy Engineering 137(5), 051009. http://dx.doi.org/10.1115/1.4030231 (IF:1.571) Yang, D. §, Reindl, T., 2015. Optimal solar irradiance sampling design using the variance quadtree algorithm. Renewables: Wind, Water and Solar 2(1), 1–8. http://dx.doi.org/10.1186/s40807-014-0001-x Lim, L.H.I., Ye, Z., Jiaying Ye, Yang, D., Du, H., 2015. A linear method to extract diode model parameters of solar panels from a single I–V curve. Renewable Energy 76, 135–142. http://dx.doi.org/10.1016/j.renene.2014.11.018 (IF:3.404) 2014 (7) Yang, D. §, Ye, Z., Nobre, A., Du, H., Walsh, W.M., Lim, L.H.I., Reindl, T., 2014. Bidirectional irradiance transposition based on the Perez model. Solar Energy 110, 768–780. https://doi.org/10.1016/j.solener.2014.10.006 (IF:3.469) Liu, H., Nobre, A., Yang, D., Ye, J., Martins, F.R., Ruther, R., Reindl, T., Aberle A.G., Peters, I.M., 2014. The impact of haze on performance ratio and short-circuit current of PV systems in Singapore. IEEE Journal of Photovoltaics 4(6), 1585–1592. http://dx.doi.org/10.1109/JPHOTOV.2014.2346429 (IF:3.165) Gu, C., Yang, D., Jirutitijaroen, P., Walsh, W.M., Reindl, T., 2014. Spatial load forecasting with communication failure using time–forward kriging. IEEE Transactions on Power Systems 29(6), 2875–2882. https://doi.org/10.1109/TPWRS.2014.2308537 (IF:2.814) Yang, D. §, Walsh, W.M., Jirutitijaroen, P., 2014. Estimation and applications of clear sky global horizontal irradiance at the Equator. Journal of Solar Energy Engineering 136(3), 034505. https://doi.org/10.1115/1.4027263 (IF:1.614) Yang, D. §, Dong, Z., Reindl, T., Jirutitijaroen, P., Walsh, W.M., 2014. Solar irradiance forecasting using spatio–temporal empirical kriging and vector autoregressive models with parameter shrinkage. Solar Energy 103, 550–562. https://doi.org/10.1016/j.solener.2014.01.024 (IF:3.469) Khoo, Y.S., Nobre, A., Malhotra, R., Yang, D., Ruther, R., Reindl, T., Aberle, G., 2014. Optimal orientation and tilt angle for maximizing in–plane solar irradiance for PV applications in Singapore. IEEE Journal of Photovoltaics 4(2), 647-653. https://doi.org/10.1109/JPHOTOV.2013.2292743 (IF:3.165) Dong, Z., Yang, D., Reindl, T., Walsh, W.M., 2014. Satellite image analysis and a hybrid ESSS/ANN model to forecast solar irradiance in the tropics. Energy Conversion and Management 79, 66–73. https://doi.org/10.1016/j.enconman.2013.11.043 (IF:4.380) 2013 (3) Yang, D.§, Gu, C., Dong, Z., Jirutitijaroen, P., Chen, N., Walsh, W.M., 2013. Solar irradiance forecasting using spatial–temporal covariance structures and time–forward kriging. Renewable Energy 60, 235–245. https://doi.org/10.1016/j.renene.2013.05.030 (IF:3.361) Yang, D. §, Dong, Z., Nobre, A., Yong Sheng Khoo, Jirutitijaroen, P., Walsh, W.M., 2013. Evaluation of transposition and decomposition models for converting global solar irradiance from tilted surface to horizontal in tropical regions. Solar Energy 97, 369–387. https://doi.org/10.1016/j.solener.2013.08.033 (IF:3.541) Dong, Z., Yang, D., Reindl, T., Walsh, W.M., 2013. Short–term solar irradiance forecasting using exponential smoothing state space model. Energy 55, 1104–1113. https://doi.org/10.1016/j.energy.2013.04.027 (IF:4.159) 2012 (1) 1. Yang, D. §, Jirutitijaroen, P., Walsh, W.M., 2012. Hourly solar irradiance time series forecasting using cloud cover index. Solar Energy 86(12), 3531–3543. https://doi.org/10.1016/j.solener.2012.07.029 (IF:2.952) Conference 名称 Too many to list. Bertrand Russell's message to the future generation 名称 My view on solar forecasting 名称 A forecast is a prediction of a future event or quantity; forecasts can thus be considered as a subset of predictions. Forecasting has three principal characteristics: first and foremost, it only consists in dealing with events or quantities that are partially predictable, in that, it is concerned with neither those events or quantities which can be known with absolute certainty, nor those to which there is nothing, other than issuing a random guess, can be done; the second source of theory is that a forecast must carry a notion of impact, such that its value can be materialized during decision-making; and the third attraction of pragmatism is that forecasts can only be verified at a future time, and so they are liable to the danger of circular reasoning, making the concocted explanations unfalsifiable. These characteristics are briefly considered in the following three paragraphs. People often think they know more than they actually do—this knowledge gap is called epistemic arrogance. Consequently, people who know little about forecasting are tempted to think in the extremes: either that forecasts are not worthy of pursuing since there is no certainty in them, or that science is mature enough for all kinds of forecasting. Arguments employed by people in the first type of extreme often come from a perspective that is guided by memorable disappointments from the past. Upon repeated conditioning by stories on how forecasts have failed—"The weather man is wrong again,'' "economists fail to forecast the recession,'' "the sports analyst's predicted score is far off the actual one''—one may lose faith in activities of the similar kind and become eventually a skeptic. What the skeptics fail to notice, however, is how far weather forecasting has come in the past century, how complex and unpredictable economics is, and how the actual score was affected by an early injury of a star player. Skeptics tend to look for instances that do not meet their expectations (or confirm their theories that forecasting does not work), yet ignore those that do. This could in turn lead to what is more generally known as a confirmation bias. Equally hazardous as scepticism on forecasting is to place a blind trust on it, which describes the second type of extreme. The reason for this danger is much simpler—if stock market forecast accuracy was exact, we would all be millionaires. In both extremes of forecasting sceptics and worshipers, what needs to be factored in is predictability—the degree to which a good forecast can be made. "Good,'' as has been debated by philosophers for millenniums, is an abstract notion. The goodness of a forecast, with no exception, is subject to interpretation. To assign any meaning to it, one must put it in context. One may interpret a forecast to be good if it corresponds to the forecaster's best judgment. How to issue a forecast truthfully and how to detect a untruthful forecast have been the topic under heated debate among forecasters. In other circumstances, one may interpret a forecast to be good if it performs better than its alternatives under some specific scoring rules. This is known as forecast verification, in which forecasts generated by different forecasters are compared with respect to the matching observations. Having established these interpretations, there is still something missing, that is, a forecast by itself possesses no intrinsic value, but can only acquire value through its ability to influence the decision made by its user. It is rational to believe a truthful forecast with high performance is more likely to result in higher value, the relationship among truthfulness, quality, and value is, however, almost surely nonlinear and may not even be monotonic. In any case, it leads to the conclusion that forecasting is only performed if it can be appreciated by the potential user of the forecasts. The last characteristic of forecasting is tied to the philosophy of science, insofar as all scientific methods require induction from specific facts to general laws. Human beings are hardwired to learn specifics when in fact they should be concerned with generalities. As argued by Bertrand Russell, who is perhaps the greatest philosopher of the twentieth century and the greatest logician since Aristotle, all inductive arguments in the last resort reduce to the form: "if this is true, that is true; now that is true, therefore this is true.'' This is a bare display of a circular reasoning fallacy. However, this seemingly foolish form of argument would not be fundamentally different from those upon which all scientific laws are based. In forecasting, we often argue that since some specific facts obey certain law, therefore other facts of a similar sort should obey the same law. In other words, we fit data to derive a forecasting model, and expect that model can be used to explain the future. We may verify the law in a region of the future by waiting for that to happen, but the practical importance of forecasting is always in regard to those regions of the future where the law has not yet been verified. Hence, the doubt as to the validity of induction is an inherent limitation of not just forecasting, but scientific methods in general. Be that as it may, because this limitation affects the whole of scientific knowledge, one has no choice but to assume pragmatically that the inductive procedure, with appropriate caveats, is admissible. 名称 Ph.D. modules Academic writing: Be like Russell M.Eng. modules Energy forecasting