樊伟科研成果_樊伟专利信息_哈尔滨工业大学航天学院樊伟科研信息|樊伟校企合作信息|樊伟联系方式
全国客户服务热线:4006-054-001 疑难解答:159-9855-7370(7X24受理投诉、建议、合作、售前咨询),173-0411-9111(售前),155-4267-2990(售前),座机/传真:0411-83767788(售后),微信咨询:543646
企业服务导航

樊伟科研成果

发布日期:2024-05-10 专利申请、商标注册、软件著作权、资质办理快速响应 微信:543646


樊伟
姓名 樊伟 性别 樊伟
学校 哈尔滨工业大学 部门 航天学院
学位 樊伟 学历 樊伟
职称 副教授 联系方式 fanwei@hit.edu.cn
邮箱 fanwei@hit.edu.cn    
软件产品登记测试全国受理 软件著作权666元代写全部资料全国受理 实用新型专利1875代写全部资料全国受理
樊伟

基本信息 科学研究 论文著作 教学工作 招生信息 专刊邀稿 ... 专刊邀稿 新建主栏目 个人描述 名称 现为哈尔滨工业大学航天学院飞行器动力学与控制研究所青年拔尖副教授。主要研究方向为柔性多体系统动力学理论及软件开发,工程结构连续体振动与非线性振动分析,航天柔性结构动力学建模与控制。主持和参与多项国家自然科学基金项目、中央高校经费项目和航天院所委托项目,针对通讯卫星桁架天线等航天大型柔性结构、高压输电线路、高速铁路、高速电梯等工程结构开展了相关动力学分析研究,为解决工程问题提供了有效分析工具和理论指导。 学习经历 名称 2014.12-2016.12,美国马里兰大学巴尔的摩郡分校,机械工程系,联合培养博士生 2013.09-2017.10,哈尔滨工业大学,飞行器动力学与控制研究所,博士 2011.09-2013.06,上海交通大学,工程力学系一般力学专业,硕士 2007.09-2011.07,上海交通大学,工程力学系,学士 工作经历 名称 2021.07-至今,哈尔滨工业大学 航天学院飞行器动力学与控制研究所 青年拔尖副教授 2018.04-2021.06,四川大学,力学科学与工程系,特聘副研究员 研究领域 名称 1.柔性多体系统动力学理论及软件开发 2.工程结构连续体振动与非线性振动分析 3. 航天柔性结构动力学建模、分析与控制 科研项目 名称 12.深圳泊松软件技术有限公司,多体动力学软件开发设计服务,2023-2024,主持; 11.国家重点研发计划政府间合作项目, 中-埃旋转机械非线性动力学与振动控制联合实验室, 2023/12-2026/11,参与; 10. 哈尔滨工业大学人才计划科研启动经费,复杂服役环境下高速铁路弓网系统多体动力学建模方法与仿真技术,2021/07-2023/12,主持; 9. 国家自然科学基金青年科学基金,11802188,基于角度坐标描述的变长度绳索/梁的柔性多体动力学建模方法研究,2019/01-2021/12,主持; 8.四川大学中央高校基本科研业务费专项资金项目,具有质量输运的一维连续介质的柔性多体动力学建模方法研究,2018/05-2021/04,主持; 7.四川大学中央高校基本科研业务费专项资金项目,空间大尺度周期性细长桁架结构的动力学特性研究,2019/04-2019/12,主持; 6.国家自然科学基金面上项目,11772101,大型多体系统动力学的多DAE求解器分布式仿真技术研究,2018/01-2021/12,参与; 5.国家自然科学基金面上项目,11772100,复杂非线性连续系统新型全局离散和高效非线性动力学分析方法研究,2018/01-2021/12,参与; 4.上海航天科技创新基金项目,大型薄膜结构自适应几何精确建模方法研究, 2018/01-2019/12, 参与; 3.委托课题,输电线路典型区段覆冰及舞动力学仿真模型构建,2019/01-2019/12,参与; 2.国家自然科学基金应急管理项目,11442006,一维时变非线性连续系统的动态响应和稳定性分析,2015/01-2017/12,参与; 1.美国国家自然科学基金,CMMI-1000830,GOALI: Dynamic Modeling and Analysis of Complex Systems with Application to Elevator Systems,2010/06-2015/06,参与; 期刊论文 名称 [42] Zhang L., Fan W., Chen Z., Ren H.#, 2024, Dynamics and attitude-vibration hybrid control of a large flexible space structure. Journal of Vibration and Control, DOI: 10.1177/10775463241227474. [41] Liu Y. P., Fan W., Ren H. #, 2024, A Computational Conformal Geometry Approach to Calculate the Large Deformation of Plates/Shells With Arbitrary Shapes. ASME-Journal of Computational and Nonlinear Dynamics, 19(2):1-27. [40]. Chen Z., Ren H., Fan W.#, Zhang L.,2024, Dynamic modeling and analysis of a large-scale hoop-column antenna using the referenced nodal coordinate formulation. Applied Mathematical Modelling, 125:738-755. [39]. Zeng S. J., Fan W., Ren H. #, 2023, Attitude control for a full-scale flexible electric solar wind sail spacecraft on heliocentric and displaced non-Keplerian orbits. Acta Astronautica. DOI: 10.1016/j.actaastro.2023.07.005. [38].Zhang S. H., Fan W.#, 2023, An exact spectral formulation for the wave characteristics in an infinite Timoshenko-Ehrenfest beam supported by periodic elastic foundations. Computers & Structures, 286:107105. [37]. Zhang B.H., Fan W., Ren H. #, 2023, A Universal Quadrilateral Shell Element for the Absolute Nodal Coordinate Formulation. ASME-Journal of Computational and Nonlinear Dynamics. DOI: 10.1115/1.4062630. [36]. Zhu H., Hu Y., Fan W., 2023, Nonlinear Dynamics of An All-movable Rudder System with Freeplay Nonlinearity. Iranian Journal of Science and Technology, Transactions of Mechanical Engine. DOI:10.1007/s40997-023-00628-y. [35]. Yuan T. F., Fan W., Ren H. #, 2023, A General Nonlinear Order-reduction Method Based on the Referenced Nodal Coordinate Formulation for a Flexible Multibody System, Mechanism and Machine Theory, 185:105290. [34]. Ren H., Fan W. #,2023, An Adaptive Triangular Element of Absolute Nodal Coordinate Formulation for Thin Plates and Membranes, Thin-Walled Structures, 182: 110257. [33].Zhang S. H., Fan W.#, Yang C.J., 2022, Semi-analytical Solution to the Steady-state Periodic Dynamic Response of an Infinite Beam Carrying a Moving Vehicle. International Journal of Mechanical Sciences, 226: 107409. [32].Xu Y., Yang C. J., Zhang W. H., Zhu W. D., Fan W., 2022, A New Moving Kirchhoff-Love Plate Element for Dynamic Analysis of Vehicle-Pavement Interaction. ASME-Journal of Vibration and Acoustics, 144(4): 041007. [31].Fan W., Zhang S. H.#, Zhu W. D., Zhu H., 2022, An Efficient Dynamic Formulation for the Vibration Analysis of a Multi-span Power Transmission Line Excited by a Moving Deicing Robot. Applied Mathematical Modelling, 103: 619-635. [30].Li D. Y., Zhu H.#, Zhu W. D., He Z., Zhou B. W., Fan W., 2021, Steady-state and start-up transient responses of a belt-driven starter generator system for micro-hybrid electric vehicles. Journal of Vibration and Control, 20(19-20): 2844-2860. [29].Fan W., Zhang S. H., Zhu W. D.#, Zhu H., 2021, Vibration Analysis and Band-gap Characteristics of Periodic Multi-span Power Transmission Line Systems. Engineering Structures,238: 111669. [28].Fan W.#, 2021, An Efficient Recursive Rotational-coordinate-based Formulation of a Planar Euler-Bernoulli Beam. Multibody System Dynamics,52(2): 1-17. [27].Zhang S. H.,Fan W.#, 2021, An Efficient Semi-analytical Formulation for the Lamb-like Waves in Layered Waveguides Based on Global Discretization. Computers & Structures, 249: 106514. [26].Fan W., Ren H.#, Zhu W. D., Zhu H.,2021, Dynamic Analysis of Power Transmission Lines with Ice-Shedding Using an Efficient Absolute Nodal Coordinate Beam Formulation. ASME-Journal of Computational and Nonlinear Dynamics, 16(1): 011005. [25].Ju R., Fan W., Zhu W. D.#, 2021, An Efficient Galerkin Averaging - Incremental Harmonic Balance Method for Nonlinear Analysis of Differential-Algebraic Equations for Multibody Systems. Nonlinear Dynamics, 105: 475-498. [24].Xu Y., Yang C. J.#, Zhang W. H., Zhu W. D., Fan W., Mei G. M., Mou J., 2021, Study on the Influence of Lateral and Local Rail Deformation on the Train–track Interaction Dynamics. Vehicle System Dynamics, 60(2): 670-698. [23].Zhu H.#, Zhu W. D., Fan W., 2021, Dynamic Modeling, Simulation and Experiment of Power Transmission Belt Drives: A Systematic Review. Journal of Sound and Vibration, 491: 115759. [22].Xu Z. Y., Zhu W. D.#, Yi G. X.#,Fan W., 2021, Dynamic Modeling and Output Error Analysis of an Imperfect Hemispherical Shell Resonator. Journal of Sound and Vibration, 498: 115964. [21].Zhu H.#, Zhu W. D., Fan W., 2021, Stick–slip Oscillations of an Engine Front-end Accessory Drive System with a Mechanical Tensioner. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 235: 400–416. [20].Fan W., Ren H.#, Ju R., Zhu W. D., 2020, On the Approximation of the Full Mass Matrix in the Rotational-coordinate-based Beam Formulation. ASME-Journal of Computational and Nonlinear Dynamics, 15(4): 041002. [19].Ju R.,Fan W., Zhu W. D.#, 2020,An Efficient Galerkin Averaging–Incremental Harmonic Balance Method Based on the Fast Fourier Transform and Tensor Contraction. Journal of Vibration and Acoustics,142(6): 061011. [18].Ju R.,Fan W., Zhu W. D.#, 2020, Comparison Between the Incremental Harmonic Balance Method and Alternating Frequency/Time-Domain Method. ASME-Journal of Vibration and Acoustics, 143(2): 024501. [17].Xu Y., Zhu W. D., Fan W., Yang C. J.#, Zhang W. H.,2020,A New Three-Dimensional Moving Timoshenko Beam Element for Moving Load Problem Analysis. ASME-Journal of Vibration and Acoustics,142(3): 031001. [16].Yang C. J.#, Xu Y., Zhu W. D., Fan W., Mei G. M., Zhang W. H., 2020, A Three-dimensional Modal Theory-Based Timoshenko Truncated Beam Model for Train-Track Dynamic Analysis. Journal of Sound and Vibration,479: 115363. [15].Zhu H.#, Hu Y. M., Zhu W. D., Fan W., Zhou B. W., 2020, Multi-objective Design Optimization of an Engine Accessory Drive System with a Robustness Analysis. Applied Mathematical Modelling, 77(2): 1564-1581. [14].Fan W., Zhu W. D.#, Zhu H., 2019, Dynamic Analysis of a Rotating Planar Timoshenko Beam Using an Accurate Global Spatial Discretization Method. Journal of Sound and Vibration,457(29): 261-279. [13].Fan W., Zhu W. D.#, 2018, An Accurate Singularity-free and Locking-free Formulation of a Three-dimensional Shear-deformable Beam Using Euler parameters. International Journal of Non-Linear Mechanics, 102: 136-146. [12].Fan W., Zhu W. D.#, 2018, An Accurate Singularity-free Geometrically Exact Beam Formulation Using Euler Parameters. Nonlinear Dynamics, 91(2): 1095-1112. [11].Ren H.,Fan W., Zhu W. D.#, 2018, An Accurate and Robust Geometrically-exact Curved Beam Formulation for Multibody Dynamic Analysis. ASME-Journal of Vibration and Acoustics, 140(1): 011012. [10].Fan W., Zhu W. D.#, 2017, Dynamic Analysis of an Elevator Traveling Cable Using a Singularity-free Beam Formulation. ASME-Journal of Applied Mechanics, 84(4): 044502. [9].Fan W., Zhu W. D.#, 2017, A New Locking-free Formulation of a Three-dimensional Shear-deformable Beam. ASME-Journal of Vibration and Acoustics, 139(5): 051001. [8].Zhu W. D.#,Fan W., Mao Y. G., Ren G. X., 2017, Three-dimensional Dynamic Modeling and Analysis of Moving Elevator Traveling Cables. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 231(1): 167–180. [7].Ju R.,Fan W., Zhu W. D.#, Huang J. L., 2017, A Modified Two-timescale Incremental Harmonic Balance Method for Steady-state Quasi-periodic Responses of Nonlinear Systems. ASME-Journal of Computational and Nonlinear Dynamics, 12(5): 051007. [6].Wu K., Zhu W. D.#,Fan W., 2017, On an Accurate Spatial Discretization Method for One-dimensional Continuous Systems. Journal of Sound and Vibration, 399: 257-284. [5].Fan W., Zhu W. D.#, 2016, An Accurate Singularity-free Formulation of a Three-dimensional Curved Euler–Bernoulli Beam for Flexible Multibody Dynamic Analysis. ASME-Journal of Vibration and Acoustics, 138(5): 051001. [4].Fan W., Zhu W. D.#, Ren H., 2016, A New Singularity-free Formulation of a Three-dimensional Euler–Bernoulli Beam Using Euler Parameters. ASME-Journal of Computational and Nonlinear Dynamics, 11(4): 041013. [3].Ren H., Zhu W. D.#,Fan W., 2016, A Nonlinear Planar Beam Formulation with Stretch and Shear Deformations under End Forces and Moments. International Journal of Non-Linear Mechanics, 85:126-142. [2].Fan W., Liu J. Y.#, 2014, Rigid-liquid-flexible Dynamic Formulation for a Two-dimensional Tank Undergoing Translational and Rotational Motion. Journal of Shanghai Jiaotong University (Science), 19: 233-240. [1].Fan W., Liu J. Y.#,2013, Geometric Nonlinear Formulation for Thermal-rigid-flexible Coupling System. Acta Mechanica Sinica, 29(5): 728-737. 教学经历 名称 《工程力学》 (四川大学本科生课程) 《振动力学》(四川大学本科生课程) 《工程力学创新实践》(四川大学本科生课程) 《计算多体系统动力学》(四川大学研究生课程) 《索梁板壳结构非线性动力学》(哈尔滨工业大学研究生课程) 《柔性多体系统动力学》(哈尔滨工业大学研究生课程) 《常微分方程与运动稳定性》(哈尔滨工业大学研究生课程) 《复杂系统动力学与振动控制》(哈尔滨工业大学研究生课程) 教学奖励 名称 2018年四川大学本科教学课堂质量优秀奖; 2020年四川省大学生力学竞赛暨第八届四川省孙训方大学生力学竞赛优秀指导教师; 招生信息 名称 多体动力学与控制课题组目前主要研究方向包括多体动力学建模理论与软件开发,航天器/多体系统动力学与控制,人体运动生物力学。课题组负责人为任辉教授,目前课题组在读博士和硕士研究生近20人。课题组每年可招生力学、机械专业博士研究生4-6名,硕士研究生4-6名。申请者原则上本科应毕业于985院校或A类(A或A+)学科专业,对于已发表高水平学术论文的硕士研究生可不受本科院校限制,欢迎力学,机械,航天等相关专业同学申请。 任辉教授主页:http://homepage.hit.edu.cn/renhui 周平助理研究员主页:http://homepage.hit.edu.cn/zhouping 研究生招生网:http://yzb.hit.edu.cn/ 博士研究生招生优秀生源快响行动:http://yzb.hit.edu.cn/2023/0609/c8824a313710/page.htm 目前课题组主要研究方向: (1)大变形索梁板壳多体动力学建模理论;(博士生张炳华,刘伊鹏,陈争) (2)高效数值积分器与联合仿真技术;(博士生周平(2023年已毕业),米珈铄) (3)多体动力学系统接触碰撞高效仿真技术(博士生彭承斌,硕士生汤玉麒(2023年已毕业),王栎景,李浩达) (4)大型柔性多体动力学系统降阶技术;(博士生袁腾飞,硕士生刘中孚) (5)航天大型柔性空间结构动力学与控制;(博士生张磊,陈争,硕士生杨硕,连高赛) (6)空间机械臂抓捕动力学与控制;(博士生张磊) (7)深空探测太阳帆与电动帆动力学建模与控制;(博士生曾圣钧,王宇,贾志波) (8)高水平运动员关键技术优化与辅助训练设备;(博士生曾圣钧,刘佳宇) (9)空间折纸结构与准零刚度隔振器动力学建模与控制;(博士生雷宏卫) (10)高维多体系统非线性与稳定性分析;(博士生鞠任(2022年已毕业),贾志波,硕士生阙浩宸) (11)海洋拖曳系统动力学建模与控制;(博士生杨思铭) (12)无人机动力学与控制;(硕士生刘润涵) (13)航空发动机执行机构动力学与控制;(博士生闵凯瑞) 专刊邀稿 名称 Special Issue:Applied Nonlinear Dynamics and Vibration Control in Engineering Applications 期刊链接:https://www.mdpi.com/journal/applsci/special_issues/393HCIV2V0#info 客座编辑:朱浩(四川大学),樊伟(哈尔滨工业大学),张松涵(大连理工大学) 专刊介绍: Nonlinear dynamics and vibration control play a crucial role in diverse engineering disciplines, ensuring the reliability, functionality, and comfort of various engineering applications. Over the past decades, a variety of techniques relevant to vibration control, wave manipulation, and energy harvesting have been developed for tackling the engineering vibration problems. However, the applications in linear vibration theory may lead to bias or even infeasibility due to the nonlinearity features, such as large deformation, contact, and friction in practices. This forms one of the greatest challenges to obtain a general representation of vibration characteristics, and remains open to be investigated until now. In such a situation, advanced computational methods for the modeling of nonlinear dynamic systems need to be developed, and the nonlinear features, such as harmonic resonance, bifurcation, and chaos, are worth to be explored. The efficient modeling techniques and the discovered novel dynamic features then allow for the breakthrough of vibration control methods as well as useful devices, which may have potential value to improve the performance, comfort, and life span of engineering systems and structures. The scope of this Special Issue encompasses a wide range of engineering applications, including structural engineering, mechanical systems, aerospace engineering, civil engineering, and ocean engineering. Contributions are sought in the areas of theoretical developments, numerical simulations, experimental studies, and practical applications related to nonlinear dynamics and vibration control.