张勇科研成果_张勇专利信息_哈尔滨工业大学能源科学与工程学院张勇科研信息|张勇校企合作信息|张勇联系方式
全国客户服务热线:4006-054-001 疑难解答:159-9855-7370(7X24受理投诉、建议、合作、售前咨询),173-0411-9111(售前),155-4267-2990(售前),座机/传真:0411-83767788(售后),微信咨询:543646
企业服务导航

张勇科研成果

发布日期:2024-05-10 专利申请、商标注册、软件著作权、资质办理快速响应 微信:543646


张勇
姓名 张勇 性别 张勇
学校 哈尔滨工业大学 部门 能源科学与工程学院
学位 张勇 学历 张勇
职称 联系方式 15804627051
邮箱 yong_zhang@hit.edu.cn    
软件产品登记测试全国受理 软件著作权666元代写全部资料全国受理 实用新型专利1875代写全部资料全国受理
张勇

基本信息 论文著作 学生培养 新建主栏目 基本信息 名称 张勇,教授/博导,主要研究方向:热辐射传输理论、方法与调控。先后获哈尔滨工业大学学士、硕士和博士学位,获得中国工程热物理学会王补宣优秀论文奖、吴仲华优秀学生奖、哈尔滨工业大学优秀博士学位论文奖。主持国家自然科学基金青年项目和面上项目、科技部重点研发子课题、中国博士后特别资助项目、黑龙江省自然科学基金等。承担航天院所、中科院小卫星创新研究院等横向合作课题。作为主要成员参与国家自然科学基金重大仪器专项和区域联合重点基金等项目。近年来,在Physical Review Letters、Material today physics 和International Journal of Heat and mass transfer等物理与传热领域著名期刊上发表SCI论文65篇;在《工程热物理学报》上发表EI论文4篇;申请/授权国家发明专利8项、软件著作权8项。结合国家“双碳”目标的重大需求,针对热辐射过程中界面几何光学、波动光学效应和调控方法等关键科学问题,准确解析了内外界面作用下宏观辐射传递规律;揭示了界面波动效应作用下微观热辐射作用机理;提出了热辐射外场调控方法及能源利用器件原理模型。研究成果在热辐射物性测量、高温工业设备优化设计等重要工程中得到应用。 1、教育经历 2006-2010,哈工大,实验学院,本科 2010-2012,哈工大,能源学院工程热物理,硕士 2012-2016,哈工大,能源学院工程热物理,博士 2014.11-2015.02, 美国明尼苏达大学双城分校,CSC-联合培养博士,导师:Eph-Sparrow 2、工作经历 2016.07-2017.12, 能源学院,讲师 2018.01-2021.12, 能源学院,硕导,青年拔尖副教授 2020.07-,能源学院,博导 2022.01-,能源学院,教授 3、研究领域 基础研究:微纳尺度辐射换热,微纳器件热管理 应用研究:空间目标红外辐射特性建模;传热与流动控制数值仿真;航天器自编程热分析软件4、承担项目 近场辐射传递机理及调控研究,2018.01~2021.01,哈尔滨工业大学青年拔尖副教授支持计划,主持 非均匀介质内瞬态偏振辐射传输及光学参数重构,2018.01~2020.12,国家自然科学基金青年科学基金,主持; 灭火泡沫传热机理研究,2019.01~2020.01, 校企合作,主持; 激光辐照矢量辐射传输研究,中国博士后科学基金特别资助,主持,结题; 光学复杂介质内辐射传递机制研究,中国博士后基金面上一等资助,主持,结题 复杂多体超材料系统近场辐射换热研究,2021.01~2024.12,国家自然科学基金面上项目,主持,在研。 国家自然科学基金重大仪器项目(熔盐导热与热辐射物性联合测量),2023~,参与 填充型近场热光伏辐射能量远距传输及热-光-电高效转换机理,国家自然科学基金区域联合重点基金,2023~,参与 μK级温控系统的地面验证与空间迁移设计,科技部重点研发计划引力波专项子课题,2023~,主持 5、承担教学 机电学院本科生课程《传热学C》,22学时/年(秋) 能源学院博士研究生课程《微尺度热物理》,22学时/年(春) 能源学院本科课程《低温与真空技术》,24学时/年(春) 能源学院研究生课程《纳米流体与热物性测量B》,16学时/年(春) 荣誉与奖励 名称 学生时期: 哈尔滨工业大学第十九届“优秀博士学位论文奖”,2017 哈尔滨工业大学首届“春晖创新成果奖”,2016 哈尔滨工业大学第七届研究生“十佳英才”,2015 哈尔滨工业大学“博士研究生国家奖学金”,2015 中国工程热物理学会第七届“吴仲华优秀学生奖”(全国18人),2014 中国工程热物理学会“王补宣青年优秀论文二等奖”(全国16人),2012 哈尔滨工业大学“优秀硕士生金奖”,2012 哈尔滨工业大学本科生“校级优秀毕业论文”,2010 期刊,会议论文 名称 一、发表论文情况:2023年[11] Jian-You Wang, Yong Zhang*, Cheng-Long Zhou, Yong Shuai, and Hong-Liang Yi, Enhanced radiative heat transfer via propagating surface modes in a 2 dielectric nanowire. Physical Review B, In production.[10] Yi-Xu Wang, Yong Zhang*, Yun-Chao Hao, Zhi-Ming Cai, Hong-Liang Yi. Near-field radiative heat transfer between moving anisotropic surfaces, JQSRT, In production. [9] Zhang Yong*, Wang Jian-You, Wang Fu-Qiang, Cai Zhi-Ming, Yi Hong-Liang*,Enhanced radiative heat transfer via the coupling of multi-particle interactions with combined surface models. International Journal of Heat and Mass Transfer 215 (2023) 124528.[8] Zhang Yan-Jiong, Zhang Yong*, Yang Shui Hua, Yi Hong-Liang, Strain-induced control of radiative heat transfer between nanoparticles in a plasmonic cavity. International Journal of Heat and Mass Transfer, ,2023, 202, 123677.[7] Qu L, Moncada-Villa E, Fang JL, Zhang Yong, Yi HL. Tunable magnetic-field effects on the near-field radiative heat transfer in planar three-body systems. Physical Review B, 2023, 107, 205405.[6] Fang JL, Qu L, Zhang Yong, Yi HL. Active control of near-field radiative heat transfer between nanoparticles and slab via the multilayered surface modes. Int J Heat Mass Transfer, 2023, 200, 123515.[5] 张琰炯,杨水华,张勇*,基于双曲石墨烯等离激元腔的纳米粒子间近场光子热效应的调制,工程热物理学报,2023[4] Hao Yun-Chao, Zhang Yong*, and Yi Hong-Liang. Near-field radiative heat transfer of nanoparticles mediated by moving metasurfaces. Physical Review B. 2023,108,125431.[3] Cui GC, Zhou CL, Zhang Yong, Yi HL. Significant enhancement of near-field radiative heat transfer by misaligned bilayer heterostructure of graphene-covered gratings. ASME Journal of Heat and Mass transfer, 2023, Accepted.[2] Zhang XB, Zhou CL, Gu F, Luo XP, Zhang Yong, Yi HL. Medium-bridge near-field thermophotovoltaic system. Nanoscale and Microscale Thermophysical Engineering, 2023, 27,195-207.[1] Zhou, Rifeng, Cui, Pengyu, Cheng, Qingli, Lang, Xuqing, Zhang, Yong, Sun, Qie, Du, Mu. Heat Transfer Performance of Gel Foam Layer with Nanoparticles Doping under a Radiative Heat Flux. Micromachines 2022, 13(12), 2223.2022年[1] Yuan Ming-Qian, Zhang Yong*, Yang Shui-Hua, Hong-Liang Yi, Active control of the near-field radiative heat transfer between two metal plates through the external electric field. International Journal of Thermal Science. 2022, 171, 107208.[2] Gaomin Tang* Lei Zhang, Yong Zhang, Jun Chen*, and C. T. Chan, Near-field energy transfer between graphene and magneto-optic media, Physical Review Letters. 2022, 127, 247401. Editor's Suggestion. [3] Zhou CL, Hu XH, Zhang Yong, Yi HL*. Super-Planckian thermal radiation in Borophene sheets. Int J Heat Mass Transfer, 2022, 183, 122140.[4] Ming-Qian Yuan, Yong Zhang*, Shui-Hua Yang, Cheng-Long Zhou, Hong-Liang Yi. Near-field thermal rectification driven by nonreciprocal hyperbolic surface plasmons. Int J Heat Mass Transfer, 2022, 185, 122437.[5] Zhou CL, Tang GM, Zhang Yong*, Antezza Mauro, Yi HL*. Radiative heat transfer in low-symmetry Bravais crystal. Physical Review B, 2022, 106, 155404[6] Zhou CL, Zhang Yong, Torbatian Z, Novko D, Antezza M, Yi HL*. Photon tunneling reconstitution in black phosphorus/hBN heterostructure. Physical Review Materials, 2022, 6, 075201.[7] Zhou CL, Zhang Yong, Yi HL*. Enhancement and Manipulation of Near-Field Thermal Radiation Using Hybrid Hyperbolic Polaritons. Langmuir, 2022, 38: 7689–7698.[8] Fang JL, Qu L, Zhang Yong, Yi HL*. High enhancement of near-field radiative heat transfer between nanoparticles via the surface modes of the dielectric thin film. Int J Heat Mass Transfer, 2022, 190, 122711.[9] Qu L, Fang JL, Zhou CL, Zhang Yong*, Yi HL*. Radiative Heat Transfer between planar arrays of graphene plasmonic nanodisks. Int J Heat Mass Transfer, 2022, 189, 122635.[10] Zhou CL, Torbatian Z, Wu XH, Zhang Yong, Yi HL*, Novko D. Tunable Near–Field Radiative Effect in a Td–WTe2 single layer, Physical Review Applied, 2022, 17, 014044.2021年 [1] Zhang Yong,* Dong Jian, Tang Gaomin, Yi Hong-Liang*. Many-particle radiative heat transfer in a nonreciprocal graphene plasmonic cavity. Physical Review B, 2021, 103, 195433.[2] Yang Shui-Hua, Zhang Yong*, Yuan Ming-Qian, Zhou Cheng-Long, Yi Hong-Liang. Anisotropic radiative heat transfer between nanoparticles mediated by a twisted bilayer graphene grating. Physical Review B. 104 125417. 2021.[3] Yang Shui-Hua, Zhang Yong*, Yuan Ming-Qian, Zhou Cheng-Long, Yi Hong-Liang. Twist-induced control of near-field thermal radiation in multilayered black phosphorus/vacuum system. International Journal of Thermal Science. 2021, 170, 107142.[4] Zhou CL, Hu XH, Zhang Yong, Xie M, Yi HL*. Radiative modulator based on Moiré hybridization with elliptic plasmons. Applied Physics Letters, 2021,118(17). 173103.[5] Zhou CL, Wu XH, Zhang Yong, Yi HL*, Mauro Antezza. Polariton Topological Transition Effects on Radiative Heat Transfer. Physical Review B, 2021, 103, 155404.[6] Qu L, Zhang Yong, Fang JL, Yi HL*. Steady-state temperature distribution under near-field radiative heat transfer inside a linear chain of polaritonic nanoparticles. JQSRT, 2021, 258, 107404.[7] 杨水华,张勇*, 易红亮, 黑磷光栅的光学特性及其近场辐射换热特性,工程热物理学报,2021,42, 2686-2691.[8] 张昕博 张 勇 易红亮,基于超表面的粒子间近场辐射换热研究,工程热物理学报,2021,42, 11935-1941.2020 年 [1] Zhang Yong, Zhou Cheng-Long, Yi Hong-Liang, Tan He-Ping, Radiative thermal diode based on the non-reciprocal graphene plasmons waveguides, Physical Review Applied 2020, 13, 034021 https://link.aps.org/doi/10.1103/PhysRevApplied.13.034021[2] Zhou Cheng-Long, Zhang Yong#, Qu Lei, Yi Hong-Liang*. Near-field negative electroluminescent cooling via nanoparticle doping. JQSRT, 2020, 245: 1-9. https://doi.org/10.1016/j.jqsrt.2020.106889[3] Zhang Yong#, Cheng-Long Zhou#, Lei Qu, Hong-Liang Yi*, Active Control of Near-Field Radiative Heat Transfer through Nonreciprocal Graphene Surface Plasmons. Applied Physical Letter, 2020, 116, 151101.[4] Zhou Cheng-Long, Qu Lei, Zhang Yong*, Yi Hong-Liang*, Fabry-Perot-cavity amplification of near-field thermal rectification, JQSRT, 2020, 251, 107023.[5] Ming-Jian He, Hong Qi*, Ya-Tao Ren, Yi-Jun Zhao, Yong Zhang, Jia-Dong Song, Mauro Antezza. Radiative thermal switch driven by anisotropic black phosphorus plasmons, Optics Express, 2020[6] Yizhi Hu, Hongen Li, Yong Zhang, Yonggang Zhu, and Yue Yang. Enhanced near-field radiation in both TE and TM waves through excitation of Mie resonance. Physical Review B 102, 125434 (2020).[7]Zhou CL, Yang SH, Zhang Y, Yi HL. Active Control of Near-Field Radiative Heat Transfer through Nonreciprocal Hyperbolic Graphene Plasmons. Nanoscale and Microscale Thermophysical Engineering, 2020.[8] Qu L, Zhang Y, Fang JL, Yi HL. Steady-state temperature distribution under near-field radiative heat transfer inside a linear chain of polaritonic nanoparticles. JQSRT, 2020.[9] Zhou CL#, Qu L#, Zhang Y, Yi HL. Enhancement and active mediation of near-field radiative heat transfer through multiple nonreciprocal graphene surface plasmons. Physical Review B, 2020, 102, 245421.[10] Fang JL, Qu L, Zhang Y, Yi HL. Resonant radiative heat transfer and many-body effects between nanoparticles and multilayered slab. Physical Review B, 2020, 102, 245418.[11] Zhou CL, Wu XH, Zhang Y, Yi HL. Thermal logical switch with multiple discrete levels. ES Energy & Environment, 2020, 10: 50-58.[12] Zhou CL, Yang SH, Zhang Y, Yi HL. Active Control of Near-Field Radiative Heat Transfer through Nonreciprocal Hyperbolic Graphene Plasmons. Nanoscale and Microscale Thermophysical Engineering, 2020, 24: 168-183. (Cover paper)2019 [1] Zhang Yong, Yi Hong-Liang*, Tan He-Ping and Antezza Mauro*, Giant resonant radiative heat transfer between nanoparticles. Physical Review B 100, 134305 (2019). https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.134305[2] Zhang Yong, Antezza Mauro, Yi Hong-Liang*, Tan He-Ping, Metasurface-mediated anisotropic radiative heat transfer between nanoparticles, Physical Review B 100, 085426 (2019). https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.085426[3] Cun-Hai Wang, Yan-Yan Feng, Kai Yue, Xin-Xin Zhang, Yong Zhang, Hong-Liang Yi, Polarized radiative transfer in complex media exposed to external irradiation, Journal of Quantitative Spectroscopy & Radiative Transfer 225 (2019) 166–179.[4] Jing-Wen Shi, Hong Qi*, Jun-You Zhang, Ya-Tao Ren, Li-Ming Ruan, Yong Zhang. Simultaneous measurement of flame temperature and species concentration distribution from nonlinear tomographic absorption spectroscopy, Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 241: 106693.2018 [4] Zhang Yong, Wang CH, Yi HL, Tan HP. Multiple surface plasmon polaritons mediated near-field radiative heat transfer between graphene/vacuum multilayers. JQSRT, 2018, 221: 138-146.[3] Zhang Yong, Yi HL, Tan HP. Near-field radiative heat transfer between black phosphorus sheets via anisotropic surface plasmon polaritons. ACS Photonics, 2018, 5(9): 3739-3747. https://pubs.acs.org/doi/10.1021/acsphotonics.8b00776[2] Luo XP, Wang CH, Zhang Yong, Yi HL, Tan HP. Multiscale solutions of Radiative Heat Transfer by the Discrete Unified Gas Kinetic Scheme. Physical Review E, 2018, 97, 063302.[1] Wang CH, Qu L, Zhang Yong, Yi HL. Three-dimensional polarized radiative transfer simulation using discontinuous finite element method. JQSRT, 2018, 208: 108-124.2017 [4] Zhang Yong, Xie XQ, Yi HL, Zhu JQ. Analysis of radiative heat transfer in two-dimensional semitransparent medium with piece-wise constant refractive index. Int J Heat Mass Transfer, 2017, 115: 482-487.[3] Zhang Yong, Yao FJ, Xie M, Yi HL. Analysis of polarized pulse propagation through one-dimensional scattering medium. JQSRT, 2017, 197: 141-153.[2] Cun-Hai Wang, Yan-Yan Feng, Yong Zhang*, Hong-Liang Yi, and He-Ping Tan, Transient/time-dependent radiative transfer in a two-dimensional scattering medium considering the polarization effect, Vol. 25, No. 13 | 26 Jun 2017 | OPTICS EXPRESS 14621.[1] Cun-Hai Wang, Yong Zhang*, HONG-LIANG YI, AND MING XIE, Analysis of transient radiative transfer induced by an incident short-pulsed laser in a graded-index medium with Fresnel boundaries, Vol. 56, No. 7 / March 1 2017 / Applied Optics 1861.2016 [5] Zhang Yong, Kim YJ, Yi HL, Xie M, Tan HP. Polarized radiative transfer in two-dimensional scattering medium with complex geometries by natural element method. JQSRT[4] Zhang Yong, Kim YJ, Yi HL, Tan HP. Vector radiative transfer in a multilayer medium by natural element method. JOSA A, 2016, 33(4): 576-588.[3] Zhang Yong, Zhou PC, Ma Y, Yi HL, Tan HP. Transient radiative transfer in a graded index slab with Fresnel surfaces. AIAA J Thermophysics Heat Transfer, 2016, 30 (3): 513-522.[2] Zhang Yong, Yi HL, Tan HP. Lattice Boltzmann method for one-dimensional vector radiative transfer. Optics Express, 2016, 24(3): 2027-2046.[1] Wang CH, Zhang Yong, Yi HL, Tan HP. Transient radiative transfer in two-dimensional graded index medium by Monte Carlo method combined with the time shift and superposition principle. Numerical Heat Transfer Part A-Applications, 2016, 69(6): 574–588.2015 [3] Zhang Yong, Yi HL, Tan HP. Analysis of transient radiative transfer in two-dimensional scattering graded index medium with diffuse energy pulse irradiation. Int J Thermal Sci., 2015, 87: 187-198.[2] Zhang Yong, Yi HL, Tan HP. Short-pulsed laser propagation in a participating slab with Fresnel surfaces by lattice Boltzmann method. Int J Heat Mass Transfer, 2015, 80: 717-726.[1] Zhang Yong, Yi HL, Tan HP. Lattice Boltzmann method for short-pulsed laser transport in a multi-layer medium. JQSRT, 2015, 155: 75-89.2014 [3] Zhang Yong, Yi HL, Tan HP. Natural element analysis for coupled radiative and conductive heat transfer in semitransparent medium with irregular geometries. Int J Thermal Sci., 2014, 76: 30-42.[2] Zhang Yong, Yi HL, Tan HP. Lattice Boltzmann method for one-dimensional transient radiative transfer in graded index medium. JQSRT, 2014, 137, 1-12.[1] Zhang Yong, Yi HL, Xie M, Tan HP. Short-pulsed laser transport in two-dimensional scattering media by natural element method. JOSA A, 2014, 31(4):818-828.2013 [6] 张勇,易红亮,谈和平. 求解辐射导热耦合换热的自然单元法,工程热物理学报,2013,05:918~922[5] Zhang Yong, Ma Y, Yi HL, Tan HP. Natural element method for solving radiative transfer with or without conduction in three-dimensional complex geometries. JQSRT, 2013, 129: 118-130.[4] Zhang Yong, Yi HL, Tan HP. Natural element method for radiative heat transfer in a semitransparent medium with irregular geometries. J Computational Physics, 2013, 241: 18-34.[3] Zhang Yong, Yi HL, Tan HP. Natural element method for radiative heat transfer in two-dimensional semitransparent medium. Int J Heat Mass Transfer, 2013, 56: 411-423.[2] Zhang Yong, Yi HL, Tan HP. Least-squares natural element method for radiative heat transfer in graded index medium with semitransparent surfaces. Int J Heat Mass Transfer, 2013, 66: 349-354.[1] Zhang Yong, Yi HL, Tan HP. One-dimensional transient radiative transfer by lattice Boltzmann method. Optics Express, 2013, 21: 24532-24549.二、会议:[1] Zhang Yong, Yao FJ, Zhang HC, Yi HL.Transient vector radiative transfer in one-dimensional scattering media by the natural element method. Proceedings of the 8th International Symposium on Radiative Transfer, RAD-16, June 6-10, 2016, Cappadocia, Turkey.[2] The Conference of Condensed Matter Physics 2023 (CCMP 2023), 2023.8.06~2023.8.11, 中国江苏省溧阳市长三角物理研究中心[3] 第二届全国超材料大会,2023.5.11~2023.5.14,南京,中国 软著与专利 名称 授权发明专利 1. 易红亮,周承隆,张勇,谈和平,一种黑磷/溴化钠堆栈近场辐射热光伏发电装置, 2021.7.20(授权日),中国,ZL202011029520.7. 2. 易红亮,周承隆,张勇,谈和平,一种基于直流电压偏置石墨烯的近场辐射热调谐器,2022.03.01(授权日),中国,ZL 202011029528.3. 3. 易红亮,周承隆,张勇,谈和平,一种基于近场热辐射的多级热控逻辑开关,2023.04.28(授权日),中国,ZL202011029738.2 4. 帅永,周思宏, 郭延铭, 张勇, 董士奎, 齐宏, 赵军明, 艾青 ;高温液态熔盐热物性参数测量装置及参数反演方法,2022-11-22(授权日), 中 国 , ZL202210360651.6 5. 帅永,周思宏, 郭延铭, 张勇, 董士奎, 齐宏, 赵军明, 艾青 ;高温液态熔盐热辐射及导热参数联合测量装置及反演方法,2023-07-11(授权日), 中 国 , ZL202211447248.3 软件著作权 1. 张勇, 杨水华, 易红亮. 各向异性表面波介导的纳米粒子辐射换热计算软件. 登记号: 2022SR0040887, 2020年8月5日. 2. 张勇,易红亮.双曲透射波介导的纳米粒子辐射换热计算软件. 登记号: 2022SR0040869, 2020年8月5日. 3. 张勇, 周承隆, 易红亮.非互易表面波介导的纳米粒子辐射二极管计算软件. 登记号: 2022SR0040868, 2020年8月5日. 4. 张勇, 易红亮.二维各向异性材料近场辐射换热计算软件. 登记号: 2022SR0040871, 2020年8月5日. 5. 杨水华, 周承隆, 张勇. 杂化双曲表面波介导的纳米粒子辐射换热计算软件. 登记号: 2022SR0040870, 2021年9月1日. 团队成员 名称 王建友,2022秋入学,博士研究生 本科:山东建筑大学 硕士:中国石油大学(华东) 研究方向:复杂波导介导的粒子辐射换热研究 研究成果:发表International Journal of Heat and Mass Transfer论文一篇 王一旭,2023春入学,博士研究生 本科:哈工大本部 硕士:英国布里斯托大学 研究方向:运动物体近场热辐射理论研究 研究成果:一作论文被JQSRT接收 郝云超,2022秋入学,硕士研究生(获得2024年硕博连读资格) 本科:哈尔滨工程大学 研究方向:复杂纳米系统辐射传热机理研究 研究成果:发表Physical review B论文一篇 徐志涛,2022秋入学,硕士研究生(莫斯科航空学院联合培养) 本科:南京理工大学 研究方向:高温熔盐热物性测试模型及机理研究 王选,2023秋入学,硕士研究生 本科:大连海事大学 研究方向:近场热光伏 许春晖,2023秋入学,硕士研究生 本科:华东理工大学 研究方向:时变系统近场热辐射机制与器件设计 学术新闻 名称 1、祝贺王建友论文“Enhanced radiative heat transfer via the coupling of multi-particle interactions with combined surface models”被 International Journal of Heat and Mass Transfer录用! 2、祝贺郝云超获得硕博连读优质生源资格! 3、祝贺郝云超在Physical Review B发表一作论文Near-field radiative heat transfer of nanoparticles mediated by moving metasurfaces. 协助指导 名称 1、方杰龙(2018级博士),2023年7月毕业,比亚迪工作 2、曲磊(2019级博士) 3、周承隆(2018级硕士,2020级博士),新加坡国立大学联合培养,入选哈工大“春雁计划” 4、刘锐(2019级硕士),就业 毕业生去向 名称 1. 张维,2020届硕士毕业生,中国铁建重工集团(长沙) 2. 袁铭谦,2021届硕士毕业生,南京大学攻博,硕士期间发表一作SCI论文2篇(International 3. Journal of Heat and Mass Transfer, International Journal of Thermal Science) 3. 杨水华,2022届硕士毕业生,新加坡国立大学攻博,硕士期间发表一作SCI论文2篇(Physical review B, International Journal of Thermal Science),荣获“哈尔滨工业大学优秀硕士毕业论文” 4. 张琰炯,2023届硕士研究生,发表一作SCI论文1篇(International Journal of Heat and Mass Transfer),西安航天科技六院11所 本科毕设 名称 李奇杰(2018) 吕锦涛(2019) 张昕博(2019) 杨水华(2019) 张琰炯(2020) 刘派汀(2020) 窦立印(2021) 范为(2021) 陈浩(2022) 苏乾(2023) 鲁宇航(2023)