黄晨光科研成果_黄晨光专利信息_西北工业大学力学与土木建筑学院黄晨光科研信息|黄晨光校企合作信息|黄晨光联系方式
全国客户服务热线:4006-054-001 疑难解答:159-9855-7370(7X24受理投诉、建议、合作、售前咨询),173-0411-9111(售前),155-4267-2990(售前),座机/传真:0411-83767788(售后),微信咨询:543646
企业服务导航

黄晨光科研成果

发布日期:2024-04-06 专利申请、商标注册、软件著作权、资质办理快速响应 微信:543646


黄晨光
姓名 黄晨光 性别
学校 西北工业大学 部门 力学与土木建筑学院
学位 工学博士学位 学历 博士研究生毕业
职称 副高 联系方式
邮箱 huangcg@nwpu.edu.cn    
软件产品登记测试全国受理 软件著作权666元代写全部资料全国受理 实用新型专利1875代写全部资料全国受理
黄晨光

个人经历 personal experience 教育经历 2010.09-2015.06,兰州大学,土木工程与力学学院,固体力学专业,工学博士 (导师:周又和教授)2006.08-2010.06,兰州大学,土木工程与力学学院,理论与应用力学专业,理学学士

内容来自集群智慧云企服 www.jiqunzhihui.net

教育教学

科学研究 Scientific Research 研究方向:电磁固体力学与智能结构, 多场耦合理论与高效计算科研项目:主持国家自然科学基金面上项目,12272310,励磁超导块材多场耦合非线性力学行为及微观磁通结构研究,55万主持国家自然科学基金青年科学基金项目,11602195,含铁磁基底的高温超导带材中磁通跳跃行为及其力学效应研究,22万主持陕西省自然科学基础研究计划项目,2021JM-046,复合超导线圈结构极端多场环境下力学行为与失超传播研究,3万主持陕西省自然科学基础研究计划项目,2018JQ1063,高温超导结构电磁热多场稳定性与断裂力学行为研究,3万主持中央高校基本科研业务费项目,3102017zy042,基于高温超导技术的电磁发射装置设计与力学稳定性分析,15万主持中央高校基本科研业务费项目,310201906zy007,强激扰下超导磁悬浮推进系统的动力失稳机制与振动抑制研究,15万主持横向项目,D5204220238,飞机复材油箱静电仿真分析,22万 内容来自集群智慧云企服 www.jiqunzhihui.net

荣誉获奖

学术成果 Academic Achievements [1] Y. Li, F. S. Wang (Corresponding author), C. G. Huang (Corresponding author), J. T. Ren, D. H. Wang, J. Kong, T. Liu, L. H. Long, Impact damage reduction of woven composites subject to pulse current, Nature communications, 14, 5046 (2023)[2] C. G. Huang, Y. F. Diao, Y. Liu, L. Chen, W. Liu, W. F. Tao, F. S. Wang, Nonlinear dynamics of 3D superconducting maglevs with six degrees of freedom: dependence on magnetization strategy and disturbance type, Superconductor science and technology, 37, 015016 (2024)[3] C. G. Huang, Z. Y. Song, S. Z. Wang, H. N. Chen, F. S. Wang, Thermomagnetic instability and accompanied stress intensity factor jumps in type-II superconducting bulks under various magnetization processes, Superconductor science and technology, 36, 015008 (2023)[4] C. G. Huang, Z. Y. Song, T. Y. Zhang, B. Xu, Electro-thermal-mechanical modeling of quench and stress evolution triggered by various factors in high-temperature superconducting coils, Journal of applied physics, 129, 213902 (2021)[5] C. G. Huang, B. Xu, Y. H. Zhou, Dynamic simulations of actual superconducting maglev systems considering thermal and rotational effects, Superconductor science and technology, 32, 045002 (2019)[6] C. G. Huang, B. Xu, Y. H. Zhou, Strategies to improve the dynamic levitation performance of superconducting maglevs against force decay and disturbance, Journal of applied physics, 127, 193907 (2020)[7] C. G. Huang, C. Xue, H. D. Yong, Y. H. Zhou, Modeling dynamic behavior of superconducting maglev systems under external disturbances, Journal of applied physics, 122, 083904 (2017)[8] C. G. Huang, T. Y. Zhang, Z. Y. Song, Modeling of vibration and drift behaviors triggered by environmental factors in a superconducting maglev with thermal-electromagnetic interaction, Journal of low temperature physics, 204, 129 (2021) [9] C. G. Huang, Y. H. Zhou, Mechanical improvement of metal reinforcement rings for a finite ring-shaped superconducting bulk, AIP Advances, 8, 035025 (2018)[10] C. G. Huang, H. D. Yong, Y. H. Zhou, Influence of movement direction on levitation performance and energy dissipation in a superconducting maglev system, AIP Advances, 7, 115305 (2017)[11] C. G. Huang, J. Liu, Magnetic and mechanical properties of a finite-thickness superconducting strip with a cavity in oblique magnetic fields, Journal of applied physics, 121, 023905 (2017)  [12] C. G. Huang, H. D. Yong, Y. H. Zhou, Magnetostrictive behaviors of type-II superconducting cylinders and rings with finite thickness, Superconductor science and technology, 26, 105007 (2013) [13] C. G. Huang, Y. H. Zhou, Levitation properties of maglev systems using soft ferromagnets, Superconductor science and technology, 28, 035005 (2015) [14] C. G. Huang, Y. H. Zhou, Magnetic and magnetostrictive properties of finite superconducting cylinders containing a cavity, Journal of applied physics, 115, 033904 (2014) [15] C. G. Huang, H. D. Yong, Y. H. Zhou, Critical state model for magneto-elastic problem of thin superconducting disks, Journal of applied physics, 114, 033913 (2013) [16] C. G. Huang, Y. H. Zhou, Numerical analysis of transport AC loss in HTS slab with thermoelectric interaction, Physica C, 490, 5 (2013) [17] C. G. Huang, H. D. Yong, Y. H. Zhou, Influence of critical current density distribution on transport ac losses for round superconducting wire, Journal of low temperature physics, 172, 59 (2013) [18] C. G. Huang, H. D. Yong, Y. H. Zhou, Effect of magnetic nanoparticles on the mechanical properties of type-II superconductors, Acta Mechanica Solida Sinica, 27, 65 (2014) [19] X. X. Wan, C. G. Huang, H. D. Yong, Y. H. Zhou, Effect of the magnetic material on AC losses in HTS conductors in AC magnetic field carrying AC transport current, AIP Advances, 5, 117139 (2015) [20] 黄晨光, 周又和, 超导线圈在强磁场作用下的弹塑性变形分析, 应用力学学报, 29, 481 (2012)

内容来自集群智慧云企服 实用新型专利1875代写全部资料全国受理

科学研究

内容来自集群智慧云企服 www.jiqunzhihui.net

学术成果

内容来自集群智慧云企服 www.jiqunzhihui.net

综合介绍

内容来自集群智慧云企服