李成博科研成果_李成博专利信息_天津大学李成博科研信息|李成博校企合作信息|李成博联系方式
全国客户服务热线:4006-054-001 疑难解答:159-9855-7370(7X24受理投诉、建议、合作、售前咨询),173-0411-9111(售前),155-4267-2990(售前),座机/传真:0411-83767788(售后),微信咨询:543646
企业服务导航

李成博科研成果

发布日期:2024-04-06 专利申请、商标注册、软件著作权、资质办理快速响应 微信:543646


李成博
姓名 李成博 性别
学校 天津大学 部门
学位 学历
职称 副教授 联系方式 邮箱:chengboli@tju.edu.cn
邮箱 chengboli@tju.edu.cn    
软件产品登记测试全国受理 软件著作权666元代写全部资料全国受理 实用新型专利1875代写全部资料全国受理
李成博

李成博 教师名称:李成博 教师拼音名称:Li Chengbo 出生日期:1979-03-18 性别:男 职称:副教授 其他联系方式 邮箱:chengboli@tju.edu.cn 基本信息 研究方向 获奖情况 论文成果 暂无内容 Geometric Mechanics Geometric Control Theory Outstanding Oversea Chinese Student 2009 1.Paul Lee and Chengbo Li, Bishop and Laplacian comparison theorems on Sasakian manifolds. Accepted by Communications of Analysis and Geometry..2019 2. (With Huaying Zhan) A note on the Jordan canonical form of a function of a matrix (a result I got during the course of matrix theory and later I found the same one in Classical Literature of Matrix theory with slightly different proof).2019 3.(With Paul Lee and Igor Zelenko) Ricci curvature lower bounds for sub-Riemannian structures on Sasakian manifolds. Discrete and continuous dynamical systems A, 36(1):303-321, 2015..2019 4. (With Zhiguang Hu and Huaying Zhan) A condition on the congruence of nonsymmetric matrices, College Mathematics, Volume 4 2015..2019 5.Chengbo Li. On curvature-type invariants for natural mechanical systems on sub-Riemannian structures associated with a principal G-bundle. INDAM Geometric control theories and sub-Riemannian geometry, 263-285, 2014..2019 6.Chengbo Li. A note on hyperbolic flow in sub-Riemannian structure with transverse symmetries. Acta.Appl.Math., 117( 1): 71-91,2012..2019 7.(With Huaying Zhan) A note on sub-Riemannian structures associated with complex Hopf fibrations. Journal of Geometry and physics, 65(1): 1-6,2012..2019 8.(With Igor Zelenko) Jacobi Equations and Comparison Theorems for Corank 1 sub-Riemannian Structures with Symmetries, Journal of Geometry and Physics,61:781-807,2011.2019 9.(With Igor Zelenko) Differential geometry of curves in Lagrange Grassmannians with given Young diagram, Differential Geometry and its Applications,27(6):723-742,2009.2019 10.(With Igor Zelenko) Parametrized curves in Lagrange Grassmannians. C.R. Acad. Sci. Paris, Ser. I, Vol. 345, Issue 11: 647-652, 2007..2019 教育经历 1998.9-2002.6 Nankai University   Mathematics   Bachelor 2002.9-2005.6 Nankai University   Applied Mathematics   Master 2005.10-2009.10 SISSA(Trieste, Italy)   Geometric Control Theory   Ph.D. 工作经历 2009.10 -2010.6 |Beijing International Center of Mathematical Research|Long-term visitor 2010.9 -2014.6 |School of Science|Tianjin University|Lecturer 2014.6 -2016.12 |School of Science|Tianjin University|Associate Professor 2016.12 -2019.12 |School of Mathematics|Tianjin University|Associate Professor 内容来自集群智慧云企服 实用新型专利1875代写全部资料全国受理