苏利伟科研成果
发布日期:2024-04-27 专利申请、商标注册、软件著作权、资质办理快速响应 微信:543646
姓名 | 苏利伟 | 性别 | |
学校 | 浙江工业大学 | 部门 | 化学工程学院 |
学位 | 博士 | 学历 | 化学工程学院 |
职称 | 副教授 | 联系方式 | 莫干山校区化工楼5-A515 |
邮箱 | suliwei@zjut.edu.cn | ||
软件产品登记测试全国受理 软件著作权666元代写全部资料全国受理 实用新型专利1875代写全部资料全国受理 |
个人简介 2003.09-2007.06 河北工业大学化学工程学院,材料化学专业(获理学学士学位);2007.09-2010.06 南开大学化学学院,材料物理与化学专业(获工学硕士学位);2010.09-2013.06 南开大学化学学院,无机化学专业(获理学博士学位);2013.09-2016.12 浙江工业大学化学工程学院,讲师;2017.01-至今 浙江工业大学化学工程学院,副教授;2017.12-2018.12 澳大利亚昆士兰科技大学,访问学者。长期致力于研究高性能动力锂离子电池材料的制备、改性、储能机理和器件开发。2012年提出并初步验证了新的储锂方式——电化学催化转化机制,并基于此机制探索高性能的储能材料、电解液和新型储能体系。目前已发表SCI论文65篇,其中第一/通信作者论文36篇,包括Adv. Funct. Mater., Nano Energy, J. Mater. Chem. A, Chem. Commun., Nanoscale和J. Power Sources等,发表中文论文6篇。三篇文章被引次数进入该领域前1%,被Web of Science评为“高被引论文”。全部论文累计被正面引用3500多次,h-index为29;十篇文章被引超过100次,一篇超过500次。申请发明专利22项,授权发明专利13项。现主持国家自然科学基金面上项目(2022-2025)、省自然基金公益项目(2022-2024)和横向项目(2021-2022)各一项;已完成国家自然科学基金青年项目(2015-2017)、省自然基金公益项目(2018-2020)和横向项目(2017-2018)各一项;以主要成员身份完成或正在参加纵/横向课题13项。2015年以主要成员身份获得天津市自然科学二等奖。 教学与课程 本科生必课程《能源电化学》(共同主讲,2013年-现在),1个班/年;本科生必课程《应用电化学本科生专业实验》(共同主讲,2013年-现在),1个班/年;本科生必课程《化工原理实验》(共同主讲,2018年-现在),3个班/年;通识性选课程《碳中和与电化学储能》(主讲,2021年开课),1个班/年;研究生选课程《固态电化学》(主讲,申请中)。2017年获得主讲教师资格证书。2020年和2021年分别获得化学工程学院青年教师教学大比武一等奖和二等奖。2021年度顺利完成教学技能工作坊IWS培训(24课时)和高校教师课程思政教学能力培训(16课时)。 育人成果 优秀毕业生2021届:赵宜哲(省优,硕士)、刘林辉(校优,硕士)。2020届:占静(省优,硕士)、夏银萍(省优、本科)、陈思远(校优,硕士)、徐莹莹(校优,本科)。2019届:黑金培(校优、博士)。比赛获奖第六届浙江省国际互联网+大学生创新创业大赛省赛金奖。 科研项目 19. 基于原位聚合的复合固态电解质研究及在锂金属电池中的应用(LGG22B030004),省公益项目/纵向,2022.01-2024.12,10万,排名1/6,在研。18. 基于Li-Si-O可逆催化反应的储锂体系设计、制备和机理研究(22179118),国家面上项目/纵向,2022.01-2025.12,60万,排名1/8,在研。17. 新能源汽车关键材料开发及产业化-高比容量硅碳基负极材料研发与产业化(2021C01176),浙江省科技计划项目,2021.01-2023.12,100万,排名3/7,在研。16. 工业废弃金属硅的绿色刻蚀机理研究及其在高性能锂离子电池中的应用(22075251),国家面上项目/纵向,2021.01-2024.12,64万,排名2/8,在研。15. 机加工行业高浓度切削液废水分离净化设备开发与产业化,金华市化工建材产品质量监督检测中心/纵向,2020.06-2022.12,20万,排名2/3,在研。14. 高首效硅氧基储锂体系建构及关键技术研发(LGG20B030002),省公益项目/纵向,2020.01-2022.12,10万,排名2/6,在研。13. 石墨烯基铅碳电池高效储能体系研发(LGG18B030001),省公益项目/纵向,2018.01-2020.12,15万,排名1/6,已结题。12. 基于工业废料设计合成硅基复合材料及其储锂性能研究(51702288),国家青年基金/纵向,2018.01-2020.12,24万,排名3/6,已结题。11. 高浓度切削液废水分离净化设备开发,浙江蓝极膜技术有限公司,2019.10-2020.05,150万,排名3/3,在研。10. 先进储能关键技术与装备研制-超高容量锂离子电池关键材料及超高容量锂离子电池(2017C01023),省科技计划项目-重点研发/纵向,2017.01-2019.12,120万,排名2/2,已结题。9. 新型硅-石墨锂电负极材料的开发,湖州创亚/横向,2017.01-2018.12,20万,排名1/3,已结题。8. 淮南通霸-浙工大超级电池工程中心,淮南通霸/横向,2016.11-2019.11,100万,排名2/2,已结题。7. 石墨烯导电剂在高能量密度动力锂电池中应用(2015C01001),省科技计划项目-重点研发/纵向,2016.01-2018.09,68万,排名3/3,已结题。6. 基于过渡金属-电化学催化反应的新型储能体系设计(21403195),国家青年基金/纵向,2015.01-2017.12,25万,排名1/6,已结题。5. 新型电池隔膜材料研究,企业横向(浙江帆度光伏),2013.11-2018.11,50万,2/2,已结题。4. Si基微纳米复合结构锂离子电池负极材料的制备及应用,科研启动专项经费,2014.06-2014.1215万,排名1/1,已结题。3. 基于CO2电化学催化反应的新型储能体系的设计(20120031110008),高等学校博士学科点专项科研基金,2013.01-2015.12,12万,排名3/6,已结题。2. 无机纳米薄片/条带的计算设计与嵌锂性能(21073096),国家面上项目,2011.01-2013.12,36万,排名5/8,已结题。1. 低维度小尺寸Wurtzite材料的结构演化及新型量子线的设计(20873067),国家面上项目,2009.01-2011.12,31万,排名6/8,已结题。 科研成果 (1)已发表论文(部分):[61] Jing Zhan,† Gaoran Li,† Qihang Gu, Hao Wu, Liwei Su,* Lianbang Wang.* Porous carbon nanosheets armoring 3D current collector towards ultrahigh mass loading for high-energy-density all-solid-state supercapacitor, ACS Applied Materials & Interfaces 2021, 13(44): 52519–52529.2021 占静 ACS AMI 介孔碳修饰的泡沫镍.pdf[60] Shen Chaoqi,† Feng Chong,† Zhang Nieqing, Yang Bo, Su Liwei, Wang Lianbang.* Hierarchical porous carbon material regenerated from natural bamboo-leaf: How to improve the performance of lead-carbon batteries? Journal of Power Sources 2021, 516: 230664.[59] Wu Hao,* Ma Jie, Sun Xiaolei, Su Liwei, Sun Bowen, Zheng Lihua, Jiang Yingying, Chen Huan, Wang Lianbang.* Core-Shell CoSn@CoSnOx Nanoparticles Encapsulated in Hollow Carbon Nanocubes as Anodes for Lithium-Ion Batteries, Energy Technology 2021, 9 (7): 2100153.[58] F. Yang, W. Zhong, M. M. Ren, W. L. Liu, M. Li, G. D. Li, L. W. Su, Poplar flower-like nitrogen-doped carbon nanotube@VS4 composites with excellent sodium storage performance,Inorganic Chemistry Frontiers 2020, 7 (24): 4883-4891.[57] L. Su, J. Zhan, Q. Gu, H. Chen, L. Wang, Y. Wang, Q. Hu, M. Ren, N-doped Carbon Nanolayer Modified Nickel Foam: A Novel Substrate for Supercapacitors, Appllied Surface Science 2021, DOI: 10.1016/j.apsusc.2020.148754.(并列一作)[56] F. Yang, W. Zhong, H. Wang, M. M. Ren, W. L. Liu, M. Li, L. W. Su, Three-dimensional VS4 consisting of uniform nanosheets as excellent anode material for sodium ion batteries, Journal of Alloys and Compounds 2020, 834: 155204.[55] L. Su, Y. Zhao, Z. Li, J. Hei, H. Chen, L. Wang, Y. Wang, M. Ren, Uniform Mesoporous CoCO3 Nanospindles on Graphite Nanosheets for Highly Efficient Lithium Storage, Particle & Particle Systems Characterization 2020, 37 (7): 2000113.(并列一作)[54] L. Su, L. Liu, J. Hei, H. Chen, L. Wang, Y. Wang, M. Ren, Sub-10 nm V2O5 Crystals on Carbon Nanosheets for Advanced All-Solid-State Lithium Metal Batteries, Particle & Particle Systems Characterization 2020, 37 (8): 2000164.(并列一作)[53] L. Wang, S. Chen, J. Hei, R. Gao, L. Liu, L. Su, G. Li, Z. Chen, Ultrafine, high-loading and oxygen-deficient cerium oxide embedded on mesoporous carbon nanosheets for superior lithium–oxygen batteries, Nano Energy 71 (2020) 104570.[52] S. Zheng, L. Su, L. Zheng, H. Wu, L. Wang, H. Zhong, M. Ren, M. Li, Sub-10 nm SnO2/Fe3O4/graphene nanosheets: Nanocatalysis to improve initial coulombic efficiency for lithium storage, Journal of Alloys and Compounds 816 (2020) 152624.(并列一作)[51] H. Xu, W. Zhong, Q.W. Chen, W.L. Liu, M. Li, L.W. Su, C.L. Gao, M.M. Ren, One-pot fabricating rambutan-like nitrogen-simultaneously-doped TiO2TiO2 double shell composites with superior sodium storage for Na-ion batteries, J. Mater. Sci-Mater El. 30 (2019) 6395-6402.[50] H. Wu, L. Zheng, J. Zhan, N. Du, W. Liu, J. Ma, L. Su, L. Wang, Recycling silicon-based industrial waste as sustainable sources of Si/SiO2 composites for high-performance Li-ion battery anodes, Journal of Power Sources 449 (2020) 227513.[49] H. Wu, L. Zheng, W. Liu, X. Xia, C. Xiao, J. Xie, L. Su, L. Wang, N. Du, Three-dimensional porous copper framework supported group IVA element materials as sodium-ion battery anode materials, Journal of Alloys and Compounds 771 (2019) 169-175.[48] H. Wu, W. Liu, L. Zheng, D. Zhu, N. Du, C. Xiao, L. Su, L. Wang, Facile Synthesis of Amorphous Ge Supported by Ni Nanopyramid Arrays as an Anode Material for Sodium-Ion Batteries, ChemistryOpen 8 (2019) 298-303.[47] X. Wang, T. Wang, R. Zhou, L. Fan, S. Zhang, F. Yu, T. Tesfamichael, L. Su, H. Wang, Ultrathin Ni1−xCoxS2 nanoflakes as high energy density electrode materials for asymmetric supercapacitors, Beilstein J. Nanotech. 10 (2019) 2207-2216.[46] X. Wang, T. Wang, L. Su, T. Tesfamichael, F. Yu, Z. Shi, H. Wang, Synthesis of CoxNi1-xS2 electrode material with a greatly enhanced electrochemical performance for supercapacitors by in-situ solid-state transformation, Journal of Alloys and Compounds 803 (2019) 950-957.[45] L.B. Wang, J. Zhan, J.P. Hei, L.W. Su, H. Chen, H. Wu, Y.H. Wang, H.X. Wang, M.M. Ren, Size-dependent capacitive behavior of homogeneous MnO nanoparticles on carbon cloth as electrodes for symmetric solid-state supercapacitors with high performance, Electrochimica Acta 307 (2019) 442-450.[44] C. Shen, H. Xu, L. Liu, H. Hu, S. Chen, L. Su, L. Wang, Facile One-Step Dynamic Hydrothermal Synthesis of Spinel LiMn2O4/Carbon Nanotubes Composite as Cathode Material for Lithium-Ion Batteries, Materials 12 (2019) 4123.[43] J. Hei, L. Su, S. Chen, W. Ye, J. Zhan, L. Wang, Y. Gao, H. Wang, Y. Wang, Enlarging Surface/Bulk Ratios of NiO Nanoparticles toward High Utilization and Rate Capability for Supercapacitors, Particle & Particle Systems Characterization 37 (2019) 1900344.(并列一作)[42] Y. Zhao, L. Zheng, H. Wu, H. Chen, L. Su, L. Wang, Y. Wang, M. Ren, Co2SiO4/SiO2/RGO nanosheets: Boosting the lithium storage capability of tetravalent Si by using highly-dispersed Co element, Electrochim Acta 282 (2018) 609-617.[41] Q. Chen, M. Ren, H. Xu, W. Liu, J. Hei, L. Su, L. Wang, Cu2S@ N, S Dual-Doped Carbon Matrix Hybrid as Superior Anode Materials for Lithium/Sodium ion Batteries, ChemElectroChem 5 (2018) 2135-2141.[40] P. Zhang, X. Wu, Y. Zhao, L. Wang, L. Su, Y. Wang, M. Ren, Ultrahigh Reversibility of SnO2 in SnO2@C Quantum Dots/Graphene Oxide Nanosheets for Lithium Storage, ChemistrySelect 2 (2017) 11853-11859.[39] J. Xie, L. Tong, L. Su, Y. Xu, L. Wang, Y. Wang, Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance, J. Power Sources 342 (2017) 529-536.[38] L.W. Su, J.P. Hei, X.B. Wu, L.B. Wang, Z. Zhou, Ultrathin Layered Hydroxide Cobalt Acetate Nanoplates Face-to-Face Anchored to Graphene Nanosheets for High-Efficiency Lithium Storage, Adv. Funct. Mater. 27 (2017) 1605544.(并列一作)[37] L. Su, J. Fu, P. Zhang, L. Wang, Y. Wang, M. Ren, Uniform core–shell Cu6Sn5@C nanospheres with controllable synthesis and excellent lithium storage performances, RSC Adv. 7 (2017) 28399-28406.[36] M. Ren, H. Xu, F. Li, W. Liu, C. Gao, L. Su, G. Li, J. Hei, Sugarapple-like N-doped TiO2@carbon core-shell spheres as high-rate and long-life anode materials for lithium-ion batteries, J. Power Sources 353 (2017) 237-244.[35] M. Ren, F. Li, W. Liu, M. Li, G. Li, J. Hei, L. Su, L. Wang, CoO@N-Doped Carbon Composite Nanotubes as Excellent Anodes for Lithium-Ion Batteries, ChemElectroChem 4 (2017) 2862-2869.[34] F. Li, M. Ren, W. Liu, G. Li, M. Li, L. Su, C. Gao, J. Hei, H. Yang, Sea urchin-like CoO/Co/N-doped carbon matrix hybrid composites with superior high-rate performance for lithium-ion batteries, J. Alloys Compd. 701 (2017) 524-532.[33] L. Su, Y. Xu, J. Xie, L. Wang, Y. Wang, Multi-yolk-shell SnO2/Co3Sn2@C Nanocubes with High Initial Coulombic Efficiency and Oxygen Reutilization for Lithium Storage, ACS Appl. Mater. Interfaces 8 (2016) 35172-35179.[32] L. Su, J. Xie, Y. Xu, L. Wang, Y. Wang, M. Ren, Effect of pore lengths on the reduction degree and lithium storage performance of Mesoporous SiOx nanomaterials, J. Alloys Compd. 663 (2016) 524-530.[31] L. Su, X. Wu, L. Zheng, T. Zheng, J. Hei, L. Wang, Y. Wang, M. Ren, Excellent Lithium Storage Materials Consisting of Highly Distributed Fe3O4 Quantum Dots on Commercially Available Graphite Nanoplates, Part. Part. Syst. Charact. 33 (2016) 597-601.[30] M.M. Ren, M.Z. Yang, W.L. Liu, M. Li, L.W. Su, C.D. Qiao, X.B. Wu, H.Y. Ma, Ultra-small Fe3O4 nanocrystals decorated on 2D graphene nanosheets with excellent cycling stability as anode materials for lithium ion batteries, Electrochimica Acta 194 (2016) 219-227.[29] M. Ren, M. Yang, W. Liu, M. Li, L. Su, X. Wu, Y. Wang, Co-modification of nitrogen-doped graphene and carbon on Li3V2(PO4)3 particles with excellent long-term and high-rate performance for lithium storage, J. Power Sources 326 (2016) 313-321.[28] L. Su, J. Xie, Y. Xu, L. Wang, Y. Wang, M. Ren, Preparation and Lithium Storage Performance of Yolk-Shell Si@Void@C Nanocomposites, Phys. Chem. Chem. Phys. 17 (2015) 17562-17565.[27] L. Su, X. Wu, J. Hei, L. Wang, Y. Wang, Mesoporous Mn3O4 Nanobeads/Graphene Hybrids: Facile Gel-Like Film Synthesis, Rational Structure Design, and Excellent Performance for Lithium Storage, Part. Part. Syst. Charact. 32 (2015) 721-727.[26] L. Su, Y. Sha, J. Jiang, L. Wang, Y. Wang, EG-Assisted Synthesis and Electrochemical Performance of Ultrathin Carbon-Coated LiMnPO4 Nanoplates as Cathodes in Lithium Ion Batteries, J. Nanomater. 401656 (2015).[25] L. Su, J. Jiang, L. Wang, Y. Wang, M. Ren, MnO QD/Graphene Dot Fabrics: A Versatile Nanohybrid Material, ChemElectroChem 2 (2015) 789-794.[24] L. Su, J. Hei, X. Wu, L. Wang, Y. Wang, Highly-Dispersed Ni-QDs/Mesoporous Carbon Nanoplates: A Universal and Commercially Applicable Approach Based on Corn Straw Piths and High Capacitive Performances, ChemElectroChem 2 (2015) 1897-1902.[23] Z. Zhang, L. Su, M. Yang, M. Hu, J. Bao, J. Wei, Z. Zhou, A Composite of Co Nanoparticles Highly Dispersed on N-Rich Carbon Substrates: an Efficient Electrocatalyst for Li-O2 Battery Cathodes, Chem. Commun. 50 (2014) 776-778.[22] P. Zhang, L. Wang, J. Xie, L. Su, C.a. Ma, Micro/Nano-Complex-Structure SiOx-PANI-Ag Composites with Homogeneously-Embedded Si Nanocrystals and Nanopores as High-Performance Anodes for Lithium Ion Batteries, Journal of Materials Chemistry A 2 (2014) 3776-3782.[21] M. Yang, Y. Zhong, X. Zhou, J. Ren, L. Su, J. Wei, Z. Zhou, Ultrasmall MnO@N-Rich Carbon Nanosheets for High-Power Asymmetric Supercapacitors, J. Mater. Chem. A 2 (2014) 12519-12525.[20] M. Yang, Y. Zhong, L. Su, J. Wei, Z. Zhou, Rational Design of Ni Nanoparticles on N-Rich Ultrathin Carbon Nanosheets for High-Performance Supercapacitor Materials: Embedded- Versus Anchored-Type Dispersion, Chem. Eur. J. 20 (2014) 5046-5053.[19] L. Wang, W. Tang, Y. Jing, L. Su, Z. Zhou, Do Transition Metal Carbonates Have Greater Lithium Storage Capability Than Oxides? A Case Study of Monodisperse CoCO3 and CoO Microspindles, ACS Appl. Mater. Interfaces 6 (2014) 12346-12352.[18] J.J. Ren, L.W. Su, X. Qin, M. Yang, J.P. Wei, Z. Zhou, P.W. Shen, Pre-lithiated graphene nanosheets as negative electrode materials for Li-ion capacitors with high power and energy density, J. Power Sources 264 (2014) 108-113.[17] R. Essehli, B. El Bali, A. Faik, M. Naji, S. Benmokhtar, Y.R. Zhong, L.W. Su, Z. Zhou, J. Kim, K. Kang, M. Dusek, Iron titanium phosphates as high-specific-capacity electrode materials for lithium ion batteries, J. Alloys Compd. 585 (2014) 434-441.[16] Y. Zhong, L. Su, M. Yang, J. Wei, Z. Zhou, Rambutan-like FeCO3 hollow microspheres: facile preparation and superior lithium storage performances, ACS Appl. Mater. Interfaces 5 (2013) 11212-11217.[15] M. Zhen, L. Su, Z. Yuan, L. Liu, Z. Zhou, Well-Distributed TiO2 Nanocrystals on Reduced Graphene Oxides as High-Performance Anode Materials for Lithium Ion Batteries, RSC Adv. 3 (2013) 13696-13701.(并列一作)[14] L.W. Su, Z. Zhou, X. Qin, Q.W. Tang, D.H. Wu, P.W. Shen, CoCO3 submicrocube/graphene composites with high lithium storage capability, Nano Energy 2 (2013) 276-282.[13] L. Su, Z. Zhou, P. Shen, Core–Shell Fe@Fe3C/C Nanocomposites as Anode Materials for Li Ion Batteries, Electrochim Acta 87 (2013) 180-185.[12] L. Su, Y. Zhong, Z. Zhou, Role of Transition Metal Nanoparticles in Extra Lithium Storage Capacity of Transition Metal Oxides: A Case Study of Hierarchical Core-Shell Fe3O4@C and Fe@C Microspheres, J. Mater. Chem. A 1 (2013) 15158-15166.[11] L. Su, Y. Zhong, J. Wei, Z. Zhou, Preparation and Electrochemical Li Storage Performance of MnO@C Nanorods Consisting of Ultra Small MnO Nanosrystals, RSC Adv. 3 (2013) 9035-9041.[10] Y. Jing, L. Su, M. Hu, J. Li, Z. Zhou, Preparation and electrochemical performances of carbon-coated MoO3 cathode materials for lithium ion batteries, J. Nanosci. Lett. 3 (2013) 30-35.[9] M. Hu, Y. Tian, L. Su, J. Wei, Z. Zhou, Preparation and Ni doping effect of nanosized truncated octahedral LiCoMnO4 as cathode materials for 5 V Li ion batteries, ACS Appl. Mater. Interfaces 5 (2013) 12185-12189.[8] M. Yang, J.X. Li, H.H. Li, L.W. Su, J.P. Wei, Z. Zhou, Mesoporous slit-structured NiO for high-performance pseudocapacitors, Phys. Chem. Chem. Phys. 14 (2012) 11048-11052.[7] L. Su, Z. Zhou, P. Shen, Ni/C Hierarchical Nanostructures with Ni Nanoparticles Highly Dispersed in N-Containing Carbon Nanosheets: Origin of Li Storage Capacity, J. Phys. Chem. C 116 (2012) 23974-23980.[6] M. Ren, S. Yuan, L. Su, Z. Zhou, Chrysanthemum-Like Co3O4 Architectures: Hydrothermal Synthesis and Lithium Storage Performances, Solid State Sci. 14 (2012) 451-455.[5] S.M. Yuan, J.X. Li, L.T. Yang, L.W. Su, L. Liu, Z. Zhou, Preparation and Lithium Storage Performances of Mesoporous Fe3O4@C Microcapsules, ACS Appl. Mater. Interfaces 3 5(2011) 705-709.[4] L. Su, Y. Jing, Z. Zhou, Li ion battery materials with core-shell nanostructures, Nanoscale 3 (2011) 3967-3983.[3] L.W. Su, Z. Zhou, M.M. Ren, Core Double-Shell Si@SiO2@C Nanocomposites as Anode Materials for Li-Ion Batteries, Chem. Commun. 46 (2010) 2590-2592.[2] M.M. Ren, Z. Zhou, L.W. Su, X.P. Gao, LiVOPO4: A Cathode Material for 4 V Lithium Ion Batteries, J. Power Sources 189 (2009) 786-789.[1] L. Ren, L.W. Su, X.F. Chen, Influence of DC Conductivity of PPy Anode on Li/PPy Secondary Batteries, J. Appl. Poly. Sci. 109 (2008) 3458-3460.(教师一作)(2)已授权专利(部分)[13] 王连邦; 陈思远; 苏利伟; 黑金培; 顾启航; 吴昊. 一种CeOx/MC纳米片材料的制备方法和应用,专利号ZL201911422620.3,申请时间2019-12-30,授权时间2021-11-23。[12] 王连邦; 冯冲; 吴昊; 张聂庆; 苏利伟; 郑华均. 一种高比表面积竹叶基炭材料的制备方法,专利号ZL01911279725.8 申请时间2019-12-13,授权时间2021-11-23。[11] 王连邦; 占静; 赵宜哲; 苏利伟; 吴昊; 林威. 一种镍钴锰氢氧化物纳米片/泡沫镍@氮掺杂碳电极材料的制备方法,专利号ZL202010156663.8,申请时间2020-03-09, 授权时间2021-10-27。[10] 王连邦; 占静; 刘林辉; 苏利伟; 吴昊; 林威. 一种镍钴锰氢氧化物纳米针/氮掺杂碳/泡沫镍电极材料的制备方法,专利号ZL202010156864.8,申请时间2020-03-09, 授权时间2021-10-27。[9] 苏利伟; 刘林辉; 王连邦; 吴昊. 一种V2O5/C复合纳米片材料的制备方法和应用,专利号ZL202010132755.2,申请时间2020-02-29, 授权时间2021-08-24。[8] 苏利伟; 陈思远; 赵宜哲; 吴昊; 王连邦. CeOx/RuO2/MC和CeOx/RuO2复合纳米片材料的制备和应用,专利号ZL202010148483.5,申请时间2020-03-09, 授权时间2021-07-27。[7] 王连邦; 苏利伟; 黑金培; 吴昊. 一种多孔四氧化三钴纳米片的制备方法,专利号ZL201710838384.8,申请时间2017-09-18, 授权时间2021-05-11。[6] 王连邦; 苏利伟; 傅江浩; 吴昊. 一种表面碳修饰的层状三元富锂材料及其应用,专利号ZL201711016740.4,申请时间2017-10-26, 授权时间2021-04-06。[5] 王连邦; 苏利伟; 赵翊鸣; 吴昊. 一种锂离子电池用石墨烯负载过渡金属硅酸盐纳米膜材料及其制备方法,专利号ZL201711290354.4,申请时间2017-12-08,授权时间2020-12-25。[4] 王连邦; 苏利伟; 傅江浩; 吴昊. 一种表面碳修饰的层状三元富锂材料及其应用,专利号ZL201711016740.4,申请时间2017-10-26,授权时间2021-04-06。[3] 王连邦; 苏利伟; 黑金培; 吴昊. 一种多孔四氧化三钴纳米片的制备方法,专利号ZL201710838384.8,申请时间2017-09-18,授权时间2021-05-11。[2] 王连邦; 苏利伟; 黑金培. 一种中空氧化铜量子点/介孔碳复合材料及其制备方法和应用,专利号ZL201611268813.4,申请时间2016-12-31,授权时间2019-06-14。[1] 王连邦; 苏利伟; 谢剑. 中空二级核壳结构硅碳复合材料及其制备和应用,专利号ZL201511030543.9,申请时间2015-12-31,授权时间2019-06-14。 社会服务 长期担任Nano Energy, J. Mater. Chem. A, Chem. Eng. J.,Chem. Commun.等期刊评委,年均审稿60篇左右。