发布日期:2024-04-27 浏览次数:次
个人简介 周晓根,教授,博士生导师,国家海外高层次青年人才计划项目入选者。2018年毕业于浙江工业大学信息工程学院,师从俞立教授和张贵军教授,2018-2021年于美国密西根大学张阳实验室从事博士后研究工作。主要研究方向为结构生物信息学、计算智能和深度学习。以第一作者在PNAS、Nature Computational Science、Nature Protocols、 Nucleic Acids Research、Bioinformatics、IEEE-TEVC、IEEE-TCYB等期刊发表论文15篇;授权国家发明专利12项;承担和参与国家自然科学基金青年项目、科技部2030-“新一代人工智能”国家重大项目及国家重点研发项目5项;合作开发了 DEMO、DEMO-EM和I-TASSER-MTD等多域蛋白质结构建模和功能预测服务器,为来自70多个国家和地区的用户提供了超过上万次服务;相关成果获得了中国自动化学会自然科学二等奖、浙江省生物信息学学会自然科学一等奖、浙江省优秀博士学位论文奖。 教学与课程 《优化方法》(本科)《生物信息学》(硕士/博士)《最优化方法与应用》(硕士/博士) 育人成果 指导研究生获得第十三届“挑战杯”中国大学生创业计划竞赛银奖,2023参加 (指导) 研究生获得第六届中国国际“互联网+”大学生创新创业大赛银奖,2020合作指导研究生获得第十六届“挑战杯”全国大学生课外学术科技作品竞赛二等奖,2019连续两年指导本科生获得密西根大学“Blue Ribbon”奖指导两年本科生进入密西根大学和耶鲁大学攻读博士/硕士学位指导本科生获得“国家级大学生创新创业项目”1项 科研项目 1. 数据和力场模型驱动的蛋白质复合物结构建模方法研究,国家自然科学基金委员会,青年科学基金项目,62203389,30万元,2023-01-01至2025-12-31,在研,主持2. 蛋白质复合物动态构象及靶标药物设计人工智能方法,科技创新2030-“新一代人工智能 (2030)”重大项目,2022ZD0115100,5897万元,2022-12至2027-11,在研,本人排序:项目骨干3. 基于人工智能的蛋白质结构预测与设计,科技创新2030-“新一代人工智能 (2030)”重大项目,2021ZD0150100,1000万元,2022-01至2023-12,在研,本人排序:项目骨干4. 蛋白质高维构象空间多模态片段组装优化方法,国家自然科学基金委员会,面上项目,61773346,64万元,2018-01至2021-12,在研,本人排序:4/85. 多域蛋白结构组装预测方法研究,浙江省自然科学基金委员会,重点项目,LZ20F030002,30万元,2020-01至2023-12,在研,本人排序:3/76. Developing novel computational methods for protein structure and function prediction,NSF Extreme Science and Engineering Discovery Environment (XSEDE) Foundation,2018-10至今,共同负责人(co-PI)7. Online Platform for I-TASSER-based Structure and Function Prediction,NSF Extreme Science and Engineering Discovery Environment (XSEDE) Foundation,2018-10至今,共同负责人(co-PI)8. Combining structural informatics and crosslinking mass spectrometry to predict the key protein-protein interactions shaping symbiotic microbial communities,National Science Foundation, 2025426,290万美元,2020-12至2024-11,在研,参与(无排序)9. Advanced approaches to protein structure prediction,National Institutes of Health,R35GM136422, 43万美元,2020-03至2025-03,在研,参与(无排序)10. Multi-level computational approaches to protein function prediction,National Science Foundation,1901191,82万美元,2019-08至2023-07,在研,参与(无排序) 科研成果 主要发表论文(#为共一作者,*为通讯作者)Xiaogen Zhou, Jun Hu, Chengxin Zhang, Guijun Zhang, Yang Zhang. Assembling multidomain protein structures through analogous global structural alignments, Proceedings of the National Academy of Sciences (PNAS), 116(32): 15930-15938, 2019. [Web Server]Xiaogen Zhou, Yang Li, Chengxin Zhang, Wei Zheng, Guijun Zhang, Yang Zhang. Progressive assembly of multi-domain protein structures from cryo-EM density maps. Nature Computational Science, 2(4): 265-275, 2022. [Web Server]Xiaogen Zhou, Wei Zheng, Yang Li, Robin Pearce, Chengxin Zhang, Eric W. Bell, Guijun Zhang, Yang Zhang. I-TASSER-MTD: A deep-learning based platform for multi-domain protein structure and function prediction, Nature Protocols, 17: 2326-2353, 2022. [Web Server]Xiaogen Zhou, Chunxiang Peng, Wei Zheng, Yang Li, Guijun Zhang, Yang Zhang. DEMO2: Assemble multi-domain protein structures by coupling analogous template alignments with deep-learning inter-domain restraint prediction. Nucleic Acids Research, 50(W1): W235-W245, 2022. [Web Server]Ziying Zhang#, Yaxian Cai#, Biao Zhang, Wei Zheng, Lydia Freddolino, Guijun Zhang, Xiaogen Zhou#*. DEMO-EM2: Assembling protein complex structures from cryo-EM maps through intertwined chain and domain fitting. Briefings in Bioinformatics, 25(2): bbae113, 2024. [Web Server]Xiaogen Zhou, Chunxiang Peng, Jun Liu, Yang Zhang, Guijun Zhang. Underestimation-assisted global-local cooperative differential evolution and the application to protein structure prediction, IEEE Transactions on Evolutionary Computation, 24(3): 536-550, 2020. Xiaogen Zhou, Guijun Zhang. Differential evolution with underestimation-based multimutation strategy, IEEE Transactions on Cybernetics, 49(4): 1353-1364, 2019. Xiaogen Zhou, Guijun Zhang. Abstract convex underestimation assisted multistage differential evolution,IEEE Transactions on Cybernetics, 47(9): 2730-2741, 2017.Xiaogen Zhou, Guijun Zhang, Xiaohu Hao, Li Yu. A novel differential evolution algorithm using local abstract convex underestimate strategy for global optimization. Computers & Operations Research, 75(11): 132-129, 2016.Xiaogen Zhou, Guijun Zhang, Xiaohu Hao, Li Yu, Dongwei Xu. Enhanced differential evolution using local Lipschitz underestimate strategy for computationally expensive optimization problems. Applied Soft Computing, 48(11): 169-181, 2016. Xiaogen Zhou, Guijun Zhang, Xiaohu Hao, Li Yu, Dongwei Xu. Differential Evolution with multi-stage strategies for global optimization. IEEE Congress on Evolutionary Computation, 2550-2557, Canada, 2016.周晓根, 张贵军, 郝小虎, 俞立. 一种基于局部Lipschitz下界估计支撑面的差分进化算法, 计算机学报, 39(12): 2631-2651, 2016.周晓根, 张贵军, 郝小虎. 局部抽象凸区域剖分差分进化算法, 自动化学报, 41(7): 1315-1327, 2015.周晓根, 张贵军, 梅珊, 明洁. 基于抽象凸估计选择策略的差分进化算法. 控制理论与应用, 32(03): 388-397, 2015.Guijun Zhang, Xiaogen Zhou, Xufeng Yu, Xiaohu Hao. Enhancing protein conformational space sampling using distance profile-guided differential evolution. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 14(6): 1288-1301, 2017.Chunxiang Peng, Xiaogen Zhou, Yuhao Xia, Jun Liu, Minghua Hou and Guijun Zhang. Structural analogue-based protein structure domain assembly assisted by deep learning. Bioinformatics, 38(19): 4513-4521, 2022. (共同第一作者) IF: 6.931Wei Zheng, Xiaogen Zhou, Qiqige Wuyun, Robin Pearce, Yang Li, and Yang Zhang. FUpred: Detecting protein domains through deep-learning based contact map prediction. Bioinformatics, 36(12): 3749-3757, 2020.Jun Liu, Xiaogen Zhou, Yang Zhang, and Gui-Jun Zhang. CGLFold: a contact-assisted de novo protein structure prediction using global exploration and loop perturbation sampling algorithm. Bioinformatics, 36(8): 2443-2450, 2020.Kailong Zhao, Jun Liu, Xiaogen Zhou, Jianzhong Su, Yang Zhang, Guijun Zhang. MMpred: a distance-assisted multimodal conformation sampling for de novo protein structure prediction. Bioinformatics, 37(23): 4350-4356, 2021.Yuhao Xia, Chunxiang Peng, Xiaogen Zhou, Guijun Zhang. A sequential niche multimodal conformational sampling algorithm for protein structure prediction. Bioinformatics, 37(23): 4357-4365, 2021.Saisai Guo, Jun Liu, Xiaogen Zhou, Guijun Zhang. DeepUMQA: ultrafast shape recognition-based protein model quality assessment using deep learning. Bioinformatics, 38(7): 1895-1903, 2022.Minghua Hou, Chunxiang Peng, Xiaogen Zhou, Biao Zhang, Guijun Zhang. Multi contact-based folding method for de novo protein structure prediction. Briefings in Bioinformatics. 23(1): bbab463, 2022.Wei Zheng, Qiqige Wuyun, Xiaogen Zhou, Yang Li, Peter L. Freddolino, and Yang Zhang. LOMETS3: Integrating deep learning and profile-alignment for advanced protein template recognition and function annotation. Nucleic Acids Research, 50 (W1), W454-W464, 2022Guijun Zhang, Tengyu Xie, Xiaogen Zhou, Liujing Wang, and Jun Hu. Protein structure prediction using population-based algorithm guided by information entropy. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18(2): 697-707, 2021.Chunxiang Peng, Xiaogen Zhou, Guijun Zhang. De novo protein structure prediction by coupling contact with distance profile. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19(1): 395-406, 2022.Yang Li, Chengxin Zhang, Eric W. Bell, Wei Zheng, Xiaogen Zhou, Dongjun Yu, Yang Zhang. Deducing high-accuracy protein contact-maps from a triplet of coevolutionary matrices through deep residual convolutional networks. PLOS Computational Biology, 17(3): e1008865, 2021.主要授权发明专利周晓根, 张贵军, 彭春祥, 胡俊, 一种基于域间残基接触的多域蛋白结构组装方法, 授权日: 2021-2-26, 中国, ZL201910316906.7.周晓根, 张贵军, 彭春祥, 胡俊, 刘俊, 一种基于子种群协同进化的蛋白质结构预测方法, 授权日: 2021-04-06, 中国, ZL201810762887.6.周晓根, 张贵军, 彭春祥, 刘俊, 胡俊, 一种基于动态抽象凸下界估计的群体蛋白质结构预测方法, 授权日: 2021-03-05, 中国, ZL201810994503.3.周晓根, 张贵军, 彭春祥, 胡俊, 刘俊,一种基于动态片段长度的群体蛋白质结构预测方法,授权日: 2021-04-12,中国ZL 201810986058.6.周晓根, 张贵军, 彭春祥, 刘俊, 胡俊, 一种基于抽象凸估计的k-近邻蛋白质结构预测方法, 授权日: 2020-04-06, 中国, ZL 201811000827.7. 科研获奖蛋白质多结构域折叠机理及全链建模方法,中国自动化学会自然科学二等奖,2022 (张贵军;周晓根;张彪)蛋白质构象空间优化及多域蛋白质建模方法,浙江省生物信息学学会自然科学一等奖,2022 (张贵军;周晓根;张彪)蛋白质结构从头预测构象空间优化理论与方法,浙江省优秀博士学位论文,浙江省研究生教育学会,2019 社会服务 浙江省生物信息学学会人工智能专委会秘书长,2022年至今 浙江省生物信息学学会生物医学大数据专委会委员,2021年至今 浙江省生物信息学学会人工智能专委会委员,2022年至今国际期刊《Crystals》专刊编辑,2022年 招生/招聘信息 欢迎计算机、自动化、数学以及生物信息学等专业的本科生、硕士生、博士生报考课题组。每年招收硕士生10名左右、博士生1-2名。课题组已与西湖大学、美国密西根大学、新加坡国立大学等相关研究小组保持密切合作关系,优秀学生可以直接推荐到上述名校联合培养。课题组常年招收深度学习、生物信息学、人工智能等方向的校聘研究员/副研究员和博士后!期待优秀青年学者加入!课题组链接:http://zhanglab-bioinf.com/index.html