哈尔滨工业大学

罗磊

发布日期:2024-05-10 浏览次数:

基本信息 科学研究 论文著作 学生培养 课余生活 新建主栏目 基本信息 名称 罗磊,教授/博士生导师,国家级高层次青年人才,能源学院副院长,研究方向为航空发动机涡轮气动热力学、冷却结构流动换热机理及设计技术。 荣誉称号:国家级高层次青年人才,黑龙江省高层次人才,黑龙江省优青,黑龙江省博士后青年英才等; 学术任职:发动机气体动力黑龙江省重点实验室副主任,黑龙江省技术市场协会常务理事等; 科研项目:近年来主持国家自然科学基金项目 2 项(面上、青年),主持国家科技重大专项课题、国家重点研发课题、国家重点研发计划子课题、工信部高质量专项课题等国家和省部级项目 10 项,主持“两机”主机所项目 13 项,累计经费3000余万元; 学术成果:在航空发动机及燃气轮机气动、传热领域权威期刊 ASME J. Turbomach.、Int. J. Heat Mass Transf.、Aerosp. Sci. Technol.、Energy、Appl. Energy、推进技术等发表论文 123 篇,论文被 SCI 收录 76 篇(JCR 一区论文 43 篇),SCI 他引次数400余次,1 篇论文入选 2020 年ESI 高被引论文。授权国家发明专利 10 项,软件著作权 15 项。所建立的设计分析方法先后应用于多个航空发动机型号中; 成果应用:成果先后应用于多款发动机。 2024年9月入学的硕士研究生和博士研究生还有名额! 欢迎同学们联系:leiluo@hit.edu.cn 教学经历 名称 2012.07-2016.07 哈尔滨工业大学 动力机械及工程 博士 2014.09-2015.09 Lund University Energy Sciences 联合培养博士 2010.07-2012.07 哈尔滨工业大学 动力机械及工程 硕士 2005.09-2009.07 哈尔滨理工大学 热能与动力工程 本科 工作经历 名称 2017.03-2019.12 哈尔滨工业大学能源科学与工程学院 讲师 2017.03-至今 哈尔滨工业大学材料科学与工程 博士后 2018.05-至今 哈尔滨工业大学能源科学与工程学院 硕士生导师 2019.12-2021.12 哈尔滨工业大学能源科学与工程学院 副教授 2020.07-至今 哈尔滨工业大学能源科学与工程学院 博士生导师 2020.09-2021.09 哈尔滨工业大学本科生院 院长助理(实岗锻炼) 2021.09-2022.04 哈尔滨工业大学能源科学与工程学院 院长专项助理 2021.12-至今 哈尔滨工业大学能源科学与工程学院 教授 2022.04-至今 哈尔滨工业大学能源科学与工程学院 能源学院副院长 荣誉称号 名称 2021 黑龙江省自然科学二等奖 2021 黑龙江省博士后青年英才 2022 黑龙江省高层次人才2022 Emerald Awards 2022 “OUTSTANDING PAPER” 2022 第十五届全国大学生节能减排社会实践与科技竞赛二等奖指导教师 2021 第二届航空航天教指委本科毕业设计优秀奖指导教师 2022 第八届黑龙江省“互联网+”大学生创新创业大赛银奖指导教师 2022 第十三届“挑战杯”中国大学生创业计划竞赛黑龙江省铜奖指导教师 2022 第一届“杭汽”杯燃气轮机设计竞赛二等奖指导教师 2020 中国航空学会学术会议优秀论文奖 2017 中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议优秀论文 学术任职 名称 2022~至今 发动机气体动力黑龙江省重点实验室副主任 2022~至今 黑龙江省技术市场协会常务理事 2022~至今 哈尔滨工业大学能源科学与工程学院教学委员会副主任 2022~至今 《应用力学学报》期刊青年编委 2021~至今 《气动研究与实验》期刊青年编委 2021~至今 《应用科技》期刊青年编委 研究方向 名称 科研项目 名称 16.涡轮凹槽叶尖冷气高效流动换热组织机理及智能设计方法研究,黑龙江省优秀青年基金,主持 15.发动机软件研制,国家重点研发计划子课题,主持 14.方法及实验研究,航空发动机及燃气轮机国家重大科技专项专题,主持 13.新型有创呼吸机核心部件关键技术研究,国家重点研发计划课题,主持 12.肋条气膜喷气下透平凹槽叶尖多尺度强掺混流动换热机理研究,国家自然科学基金面上项目,主持 11.凹陷涡对不同曲率涡轮前缘层板流动与换热影响的机理研究,国家自然科学基金青年基金,主持 10.涡轮前缘层板流动换热与外部气膜的耦合作用机理,中国博士后科学基金特别资助,主持 9.凹陷涡强化涡轮前缘冲击冷却结构换热的机理研究,中国博士后科学基金面上一等资助,主持 8.重型燃气轮机涡轮叶片前缘带凹陷涡层板冷却结构流动换热机理,黑龙江省博士后基金,主持 7.高压涡轮流动、损失机理及气动研究,装备预研重点实验室基金,主持 6.航空发动机涡轮带凹坑尾缘冷却结构流动换热特性,哈工大校科创基金,主持 5.涡轮盘/榫接结构设计可视化软件开发,中国航发研究院,主持,经费 4.涡轮叶片冷效试验与涡轮部件工程方案初步设计, 航天31所,参与 3.透平叶片低应力冷却布局方法与换热机理,国家重大科技专项,参与 2.涡轮部件气动传热方案设计,航天31所,参与 1.冷气与主流耦合设计技术及计算方法研究,沈阳发动机设计研究所(606所),参与 期刊论文 名称 [50] Du, W., Luo, L*., Wang, S., Liu, J., & Sunden, B. (2019). Heat transfer and flow structure in a detached latticework duct. Applied Thermal Engineering, 155, 24-39. (SCI Journal Paper, IF= 4.026) [49] Du, W., Luo, L.*, Wang, S., Liu, J., & Sunden, B. (2019). Effect of the Broken Rib Locations on the Heat Transfer and Fluid Flow in a Rotating Latticework Duct. ASME Journal of Heat Transfer, 141(10), 102102. (SCI Journal Paper, IF= 1.479) [48] Du, W., Luo, L.*, Wang, S., Bi, S., & Zhang, X. (2019). Heat Transfer Characteristics in a Rotating Pin Finned Duct With Different Protrusion Locations. ASME Journal of Thermal Science and Engineering Applications, 11(6), 061009. (SCI Journal Paper, IF= 1.118) [47] Du W, Luo L*, Wang S, et al. Heat Transfer and Flow Structurein a Latticework Duct WithDifferent Sidewalls, ASME Journal of Heat Transfer, 2019, 141(12), 124502. (SCI Journal Paper, IF= 1.479) [46] Luo, L*., Zhao, Z., Kan, X., Qiu, D., Wang, S., & Wang, Z. (2019). On the heat transfer and flow structures characteristics of turbine blade tip underside with dirt purge holes at different locations by using topological analysis. ASME Journal of Turbomachinery, 1-24. (SCI Journal Paper, IF= 2.453 ,行业顶尖期刊) [45] Luo, L*., Du, W., Wang, S., Wu, W., & Zhang, X. (2019). Multi-objective optimization of the dimple/protrusion channel with pin fins for heat transfer enhancement. International Journal of Numerical Methods for Heat & Fluid Flow, 29(2), 790-813. (SCI Journal Paper, IF=2.45) [44] Luo, L*., Yan, H., Du, W., Wang, S., Li, C., & Zhang, X. (2019). Flow Structure and Heat Transfer Characteristics of a Rectangular Channel With Pin Fins and Dimples With Different Shapes. ASME Journal of Thermal Science and Engineering Applications, 11(2), 024501. (SCI Journal Paper, IF=0.993) [43] Qiu, D., Luo, L. *, Wang, S., Sunden, B. A., & Zhang, X. (2019). Analysis of heat transfer and fluid flow of a slot jet impinging on a confined concave surface with various curvature and small jet to target spacing. International Journal of Numerical Methods for Heat & Fluid Flow. [42] Du, W., Luo, L. *, Wang, S., & Zhang, X. (2019). Heat Transfer Characteristics in a Pin Finned Channel With Different Dimple Locations. Heat Transfer Engineering, 1-20. [41] Du, W., Luo, L. *, Wang, S., Liu, J., & Sunden, B. A. (2019). Enhanced heat transfer in a labyrinth channels with ribs of different shape. International Journal of Numerical Methods for Heat & Fluid Flow. [40] Wang, C., Wang, Z., Wang, L., Luo, L., & Sundén, B. (2019). Experimental study of fluid flow and heat transfer of jet impingement in cross-flow with a vortex generator pair. International Journal of Heat and Mass Transfer, 135, 935-949. (SCI Journal Paper, IF=3.891) [39] Kan, X., Wang, S., Luo, L., & Su, J. (2019). Investigation of the Vortex Dynamic Mechanism of the Flow Losses on a Transonic Compressor Stator. Journal of Thermal Science, 28(1), 51-60. (SCI Journal Paper, IF=678) [38] Du, W., Luo, L*., Wang, S., & Zhang, X. (2019). Flow structure and heat transfer characteristics in a 90-deg turned pin fined duct with different dimple/protrusion depths. Applied Thermal Engineering, 146, 826-842. (SCI Journal Paper, IF=3.771) [37] Luo, L*., Chen, Q., Du, W., Wang, S., Sundén, B., and Zhang, X. (2018), Computational investigation of the dust hole effect on the heat transfer and friction factor characteristics in a U bend channel, Applied Thermal Engineering, 140, pp. 166-179. (SCI Journal Paper, IF=3.771) [36] Du, W., Luo, L*., Wang, S., and Zhang, X. (2018), Effect of the dimple location and rotating number on the heat transfer and flow structure in a pin finned channel, International Journal of Heat and Mass Transfer, 127, pp. 111-129. (SCI Journal Paper, IF=3.891) [35] Luo, L*., Wang, C., Wang, L., Sundén, B.*, and Wang, S., (2016), Heat transfer and friction factor performance in a pin fin wedge duct with different dimple arrangements, Numerical Heat Transfer, Part A: Applications, 69(2), pp. 209-226.( SCI Journal Paper, IF=2.409) [34] Luo, L*., Sunden, B.*, and Wang, S. (2015), Optimization of the Blade Profile and Cooling Structure in a Gas Turbine Stage Considering both the Aerodynamics and Heat Transfer, Heat Transfer Research, 46(7), 599-629. (SCI Journal Paper, IF=0.404) [33] Luo, L.*, Wang, C., Wang, L., Sundén, B.*, and Wang, S. (2016), Heat transfer and friction factor in a dimple-pin fin wedge duct with various dimple depth and converging angle, International Journal of Numerical Methods for Heat & Fluid Flow, 26(6), 1954-1974. (SCI Journal Paper, IF=2.45) [32] Luo, L.*, Wang, C., Wang, L., Sundén, B.*, and Wang, S. (2015), Endwall heat transfer and aerodynamic performance of bowed outlet guide vanes (OGVs) with on-and off-design conditions, Numerical Heat Transfer, Part A: Applications, 69(4), 352-368. (SCI Journal Paper, IF=2.409) [31] Luo, L.*, Wang, C., Wang, L., Sundén, B.*, and Wang, S. (2016), A numerical investigation of dimple effects on internal heat transfer enhancement of a double wall cooling structure with jet impingement, International Journal of Numerical Methods for Heat & Fluid Flow, 26(7), 2175-2197. (SCI Journal Paper, IF=2.45) [30] Luo, L.*, Wang, C., Wang, L., Sundén, B.*, and Wang, S. (2016), Computational investigation of dimple effects on heat transfer and friction factor in a Lamilloy cooling structure, Journal of Enhanced Heat Transfer, 22(2), 147-175. (SCI Journal Paper, IF=0.562) [29] Luo, L.*, Wen, F., Wang, L., Sundén, B.*, and Wang, S. (2017), On the solar receiver thermal enhancement by using the dimple combined with delta winglet vortex generator, Applied Thermal Engineering, 111, 586-598. (SCI Journal Paper, IF=3.771) [28]. Luo, L.*, Wen, F., Wang, L., Sundén, B.*, and Wang, S. (2016), Thermal enhancement by using grooves and ribs combined with delta-winglet vortex generator in a solar receiver heat exchanger, Applied Energy, 183, 1317-1332. (SCI Journal Paper, IF=7.9) [27] Luo, L*, Du, W., Wang, S., Sunden, B.*, and Zhang, X. (2018), Flow structure and heat transfer characteristics of a 90°-turned pin-finned wedge duct with dimples at different locations, Numerical Heat Transfer, Part A: Applications, 73(3), 143-162. (SCI Journal Paper, IF=2.409) [26] Luo, L.*, Wang, C., Wang, L., Sundén, B.*, and Wang, S. (2016), Parametric influence on convective heat transfer for an outlet guide vane (OGV), Numerical Heat Transfer, Part A: Applications, 70(4), 331-346. (SCI Journal Paper, IF=2.409) [25] Luo, L.*, Wang, C., Wang, L., Sundén, B.*, and Wang, S. (2017), Effects of pin fin configurations on heat transfer and friction factor in an improved Lamilloy cooling structure, Heat Transfer Research, 48(7), 657–679. (SCI Journal Paper, IF=0.404) [24] Luo, L.*, Du, W., Wen, F., and Wang, S. (2017), Convergence angles effect on the heat transfer characteristics in a wedge duct with dimple/protrusion, Heat Transfer Research, 48(14):1237–1262. (SCI Journal Paper, IF=0.404) [23] Luo, L.*, Du, W., Wang, S., Wang, L., Sundén, B.*, and Zhang, X. (2017), Multi-objective optimization of a solar receiver considering both the dimple/protrusion depth and delta-winglet vortex generators, Energy, 137, 1-19. (SCI Journal Paper, IF=4.968) [22] Luo L*, Qiu D, Du W, et al., (2018), Surface temperature reduction by using dimples/protrusions in a realistic turbine blade trailing edge, Numerical Heat Transfer, Part A: Applications, 74 (5), 1265-1283. (SCI Journal Paper, IF=2.409) [21] Luo L*, Yan H, Du W, et al., (2018), Convergence Angle and Dimple Shape Effects on the Heat Transfer Characteristics in a Rotating Dimple-Pin Fin Wedge Duct. Numerical Heat Transfer, Part A: Applications, 74(10), 1611-1635.. (SCI Journal Paper, IF=2.409) [20] Du W, Luo L*, Wang S, et al. (2018), Flow structure and heat transfer characteristics in a 90-deg turned pin fined duct with different dimple/protrusion depths, Applied Thermal Engineering, 146, 826-842. ( SCI Journal Paper, IF=3.771) [19] Wang, S., Du W., Luo, L*., Qiu D.., and Zhang X., Li S. (2017), Flow structure and heat transfer characteristics of a dimpled wedge channel with a bleed hole in dimple at different orientations and locations, International Journal of Heat & Mass, 117, 1216-1230. (SCI Journal Paper, IF=3.891) [18] Wang, C., Luo, L., Wang, L., and Sundén, B. (2016), Effects of vortex generators on the jet impingement heat transfer at different cross-flow reynolds numbers, International Journal of Heat & Mass Transfer, 96, 278-286. (SCI Journal Paper, IF =3.891) [17] Wang, C., Luo, L., Wang, L., Sundén, B., Chernoray, V., and Arroyo, C. (2016), Experimental and numerical investigation of outlet guide vane and endwall heat transfer with various inlet flow angles, International Journal of Heat & Mass Transfer, 95, 355-367. (SCI Journal Paper, IF=3.891) [16] Wang J, Luo L, Wang L, et al .(2018), Thermal performance of angled, V-shaped and leaning-V-shaped ribs in a rotating rectangular channel with 45° orientation, International Journal of Numerical Methods for Heat & Fluid Flow,, 28(3): 661-683. (SCI Journal Paper, IF=2.45) [15] Kan, X., Wang, S., Luo, L., and Su, J. (2018). Numerical analysis of the weight distribution of flow losses in a highly loaded compressor cascade with different incidences. Applied Thermal Engineering, 139, 552-561. (SCI Journal Paper, IF=3.771) [14] Zhao, Z., Luo, L.*, Zhou, X., and Wang, S. (2018), Effect of Coolant Mass Flow Rate of Dirt Purge Hole on Heat Transfer and Flow Characteristics at a Turbine Blade Tip Underside, ASME Paper, DOI:10.1115/GT2018-76156. [13] Du, W., Luo, L.*, & Wang, S. (2018). Effect of Dimple/Protrusion Depth on Flow Structure and Heat Transfer in a Rotating Channel With Pin Fin, ASME Paper, DOI:10.1115/GT2018-76158. [12] Wang, C., Luo, L., Wang, L., and Sundén, B. (2016), Heat Transfer and Fluid Flow of a Single Jet Impingement in Cross-Flow Modified by a Vortex Generator Pair, ASME Paper, DOI:10.1115/GT2016-56894. [11]. 罗磊, 卢少鹏, 王松涛, 王龙飞, 崔涛. 多级考虑冷气掺混流片变厚度的 S1 流面研究[J]. 航空动力学报, 2014, 29(9): 2210-2220. [10]. 罗磊, 卢少鹏, 迟重然, 王松涛, 王龙飞, 王仲奇. 气热耦合条件下涡轮动叶叶型与冷却结构优化[J].推进技术, 2014, 35(5): 603:609. [9]. 罗磊, 王松涛, 迟重然, 温风波, 卢少鹏, 刘轶. 传热设计流程在涡轴涡轮冷却中的应用[J]. 推进技术, 2013, 34(11): 1520-1529. [8]. 罗磊, 迟重然, 卢少鹏, 王松涛, 王仲奇.燃气涡轮静叶考虑叶型及冷却结构的气热耦合优化[J]. 工程热物理学报, 2014, 6: 1079-1082. [7]. 罗磊,陈朔,温风波,王松涛. 燃气涡轮无气膜冷却动叶参数化设计系统应用[J]. 推进技术, 2015, 36(6): 864-875. [6]. 罗磊,陈朔,刘维,王松涛,王仲奇. 燃气涡轮带气膜动叶设计流程及分析[J]. 电机工程学报, 2015, 35(16): 4112-4121. [5]. 王晋声, 罗磊, 崔涛, 王松涛. 燃气涡轮导叶冷却结构设计及数值模拟[J].中国电机工程学报, 2014, 34(5): 800-807. [4]. 卢少鹏, 迟重然, 罗磊, 蔡乐, 王松涛, 冯国泰, 王仲奇.气热耦合条件下涡轮静叶三维优化[J]. 推进技术, 2014, 35(3): 356-364. [3]. 王龙飞, 王松涛, 卢少鹏, 罗磊, 温风波.小高径比扰流柱冷却通道的换热和流动特性[J]. 航空动力学报, 2015, 30(6): 1307-1318. [2]. 王龙飞, 王松涛, 罗磊, 等. 考虑冷气的多级涡轮翘曲S_1流面的气动优化[J]. 航空动力学报, 2015, 30(7): 1700-1710. [1]. 王龙飞, 王松涛, 罗磊, 温风波, 崔涛. 冷气对多级涡轮翘曲S_1流面优化的影响[J]. 推进技术, 2016,37(3): 459-470. 招生信息 名称 2024年9月入学的硕士研究生和博士研究生还有名额! 欢迎有进取心的同学们报名! 博士研究生培养 名称 硕士研究生培养 名称 本科生培养 名称 课余生活 名称

上一篇:陈文振     下一篇:张广辉