吉林大学

姜振蛟

发布日期:2024-04-06 浏览次数:

姜振蛟 ( 教授 ) 赞156 的个人主页 https://teachers.jlu.edu.cn/JZJ4/zh_CN/index.htm   教授 性别 : 男 学历 : 博士研究生毕业 学位 : 博士 在职信息 : 在职 所在单位 : 新能源与环境学院 学科 : ★地下水科学与工程 办公地点 : 长春市解放大路2519号 个人简介 姜振蛟教授,博导/硕导联系方式:zjjiang@jlu.edu.cn主讲本科课程l  地质统计学l  地下水数值模拟l  地下水动力学 研究领域l  地质资源(地下水、地热、砂岩铀矿)高效可持续开发 主攻方向l  多尺度含水层非均质结构识别理论与方法l  地下水相关地质资源开发过程数字镜像 个人简介姜振蛟,吉林大学英才教授,博士生导师。入选国家博士后国际交流派出计划、吉林省留学回国人员创新创业人才计划、吉林省高校优秀青年科研创新人才储备库。面向地下水相关地质资源高效可持续开发需求,主要研究区域尺度和场地尺度含水层非均质结构识别理论与方法。近年来基于内蒙砂岩型铀矿开发场地和青海恰卜恰地热开发场地,研究铀矿和地热资源开采过程数字孪生理论与技术。主持国家自然科学基金青年和面上项目,国家重点研发项目子课题,以及中核集团、地调/地勘等企事业单位委托项目10余项。在Water Resources Research, Geoscientific Model Development等期刊发表学术论文50余篇。兼任Hydrogeology Journal 副主编,Groundwater for Sustainable Development 和 Global Geology等期刊编委。获吉林大学李四光优秀青年教师、新能源与环境学院优秀教师、本科教学课堂质量奖等荣誉。主持的科研项目l  国家级项目(1)    裂隙网络水热运动规律与图神经网络模型构建, 国家自然科学基金面上项目,2022年1月至2025年12月,在研;(2)    高硫矿区地下水污染过程模拟及其生态环境风险评估技术,国家重点研发计划子课题,2022年10月至2026年9月,在研;(3)    干热岩储层建造与地热能可持续开发研究, 国际合作研究项目子课题,2019年10月至2022年10月,优秀结题;(4)    压裂监测与人工储层裂隙网络表征, 国家重点研发计划子课题,2019年10月至2023年3月,优秀结题;(5)    基于地质统计学方法确定干热岩体天然裂隙分布格局,国家自然科学基金青年基金项目,2016年1月至2018年12月,结题。l  技术开发类项目(1)    碳酸岩型增强型地热系统裂隙示踪反演技术研发与应用,江苏地调院,2023年3月至2024年12月,在研;(2)    《基于数据驱动的智能地浸铀矿关键技术研究》砂岩型铀矿地浸开采过程动态智能调控软件开发,核工业北京化工冶金研究院,2022年1月至2024年7月,在研;(3)    砂岩型铀矿人工智能定位预测,中国地质调查局天津地调中心,2020年6月至2021年6月,结题;(4)    二连基地资源储量四维动态评价水文地质参数研究成果优化验证,中核第四研究设计工程有限公司,2020年4月至2020年12月,结题。l  技术服务类项目(1)    青海省共和县恰卜恰地区地下热水资源预可行性勘查,青海省水文地质工程地质环境地质调查院,2019年,结题;(2)    青海贵德盆地水化学与同位素测试分析,青海九零六工程勘察设计院有限责任公司,2022年,结题;(3)    青海共和盆地地下热水资源调查评价项目,青海省地质环境调查院,2022年,结题; 第一/通讯作者论文[29] Li, SY, Xu, TF, Chen, ZB, Jiang, ZJ*. Efficient fracture network characterization in enhanced geothermal reservoirs by the integration of microseismic and borehole logs data. Geothermics, 2023, https://doi.org/10.1016/j.geothermics.2023.102791[28] Jiang, ZJ*; Ringel, LM; Bayer, P; Xu, TF. Fracture Network Characterization in Reservoirs by Joint Inversion of Microseismicity and Thermal Breakthrough Data: Method Development and Verification. Water Resources Research, 2023. https://doi.org/10.1029/2022WR034339[27] Liang, X; Xu, TF; Chen, JY; Jiang, ZJ*.  A deep-learning based model for fracture network characterization constrained by induced micro-seismicity and tracer test data in enhanced geothermal system. Renewable Energy, 2023, https://doi.org/10.1016/j.renene.2023.119046[26] Wang, L; Jiang, ZJ; Li, CY. Comparative study on effects of macroscopic and microscopic fracture structures on the performance of enhanced geothermal systems. Energy, 2023. https://doi.org/10.1016/j.energy.2023.127300[25] Chen, JY; Xu, TF; Liang, X; Jiang, ZJ*. Stochastic inversion of tracer test data with seismicity constraint for permeability imaging in enhanced geothermal reservoirs. Geophysics, 2022. https://doi.org/10.1190/GEO2022-0130.1[24] Xu, TF *; Moore, J*; Jiang, ZJ *. The Special Issue on Hot Dry Rock Resource Exploration and Enhanced Geothermal Engineering. ACTA GEOLOGICA SINICA-ENGLISH EDITION, 2021. https://doi.org/10.1111/1755-6724.14868[23] Xu, TF; Liang, X; Xia, Y; Jiang, ZJ*; Gherardi, F. Performance evaluation of the Habanero enhanced geothermal system, Australia: Optimization based on tracer and induced micro-seismicity data, Renewable Energy, 2021, https://doi.org/10.1016/j.renene.2021.09.111[22] Jiang, ZJ*; Zhang, SY; Turnadge, C; Xu, TF. Combining autoencoder neural network and Bayesian inversion to estimate heterogeneous permeability distributions in enhanced geothermal reservoir, Geothermics, 2021, https://doi.org/10.1016/j.geothermics.2021.102262[21] Xu, TF; Li, SY; Jiang, ZJ*.Effect of geothermal flow on critical zone temperature, CATENA, 2021, https://doi.org/10.1016/j.catena.2021.105651[20] Li, YS; Liu, CL; Cao, SW; Miao, QZ; Dong, Y; Jiang, ZJ*. Br/Cl ratio, Zn and radon constraints on the origin and fate of geothermal fluids in the coastal region of southeastern China, Hydrogeology Journal, 2021, https://doi.org/10.1007/s10040-021-02373-5[19] Zhang, SY; Jiang, ZJ*; Zhang, SS; Zhang, QX.Well placement optimization for large-scale geothermal energy exploitation considering nature hydro-thermal processes in the Gonghe Basin, China, Journal of Cleaner Production, 2021, https://doi.org/10.1016/j.jclepro.2021.128391[18] Jiang, ZJ*; Mallants, D; Gao, L; Munday, T; Mariethoz, G; Peeters, L. Sub3DNet1. 0: a deep-learning model for regional-scale 3D subsurface structure mapping, Geoscientific Model Development, 2021, https://doi.org/10.5194/gmd-14-3421-2021[17] Jiang, ZJ*; Mallants, D; Xu, TF; Zhang, SS. Numerical simulation of stable isotope fractionation with density changes in regional-scale confined geothermal aquifers, Applied Geochemistry, 2020, https://doi.org/10.1016/j.apgeochem.2020.104742[16] Chen, JY; Xu, TF; Jiang, ZJ*; Feng, B; Liang, X. Reducing formation damage by artificially controlling the fluid-rock chemical interaction in a double-well geothermal heat production system, Renewable Energy, 2020, https://doi.org/10.1016/j.renene.2019.12.038[15] Jiang, ZJ; Xu, TF; Wang, Y. Enhancing heat production by managing heat and water flow in confined geothermal aquifers, Renewable Energy, 2019, https://doi.org/10.1016/j.renene.2019.03.147[14] Jiang, ZJ*; Mallants, D; Peeters, L; Gao, L; Soerensen, C; Mariethoz, G. High-resolution paleovalley classification from airborne electromagnetic imaging and deep neural network training using digital elevation model data, Hydrology and Earth System Sciences, 2019, https://doi.org/10.5194/hess-23-2561-2019[13] Hou, ZY; Xu, TF; Feng, GH; Feng, B; Yuan, YL; Jiang, ZJ*.Numerical Modeling of Reactive Transport and Self-Sealing Processes in the Fault-Controlled Geothermal System of the Guide Basin, China, Geofluids, 2019, https://doi.org/10.1155/2019/1853068[12] Jiang, ZJ*; Xu, TF; Mallants, D; Tian, HL; Owen, DDR. Numerical modelling of stable isotope (2H and 18O) transport in a hydro-geothermal system: Model development and implementation to the Guide Basin, China, Journal of Hydrology, 2019, https://doi.org/10.1016/j.jhydrol.2018.11.065 l  Pre-2018[11] Liang, X; Xu, TF; Feng, B; Jiang, ZJ*. Optimization of heat extraction strategies in fault-controlled hydro-geothermal reservoirs, Energy, 2018, https://doi.org/10.1016/j.energy.2018.09.043[10] Jiang, ZJ*; Xu, TF; Mariethoz, G. Numerical investigation on the implications of spring temperature and discharge rate with respect to the geothermal background in a fault zone, Hydrogeology Journal, 2018, https://doi.org/10.1007/s10040-018-1769-3[9] Xu, TF; Yuan, YL; Jia, XF; Lei, YD; Li, ST; Feng, B; Hou, ZY; Jiang, ZJ*. Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: a case study in the Gonghe Basin, Qinghai Province, China, Energy, 2018, https://doi.org/10.1016/j.energy.2018.01.135[8] Jiang, ZJ*; Xu, TF; Owen, DR; Jia, XF; Feng, B; Zhang, Y. Geothermal fluid circulation in the Guide Basin of the northeastern Tibetan Plateau: isotopic analysis and numerical modeling, Geothermics, 2018, https://doi.org/10.1016/j.geothermics.2017.10.007[7] Jiang, ZJ*; Mariethoz, G; Schrank, C; Cox, M; Timms, W. Mapping the hydraulic connection between a coalbed and adjacent aquifer: example of the coal-seam gas resource area, north Galilee Basin, Australia. Hydrogeology Journal, 2016, https://doi.org/10.1007/s10040-016-1447-2.[6] Xiao, X; Jiang, ZJ*; Owen, D; Schrank, C . Numerical simulation of a high-temperature aquifer thermal energy storage system coupled with heating and cooling of a thermal plant in a cold region, China. Energy, 2016, https://doi.org/10.1016/j.energy.2016.06.124[5] Jiang, ZJ*; Mariethoz, G; Raiber, M; Timms, W; Cox, M. Application of 1D paleo-fluvial process modelling at a basin scale to augment sparse borehole data: example of a Permian formation in the Galilee Basin, Australia. Hydrological Processes, 2016. https://doi.org/10.1002/hyp.10747[4] Jiang, ZJ*; Mariethoz, G; Farrell, T; Schrank, C; Cox, M. Characterization of alluvial formation by stochastic modelling of paleo-fluvial processes: The concept and method. Journal of Hydrology, 2015, https://doi.org/10.1016/j.jhydrol.2015.03.007[3] Jiang, ZJ*; Raiber, M; Bian, JM; Cox, M. On the effective hydraulic conductivity and macrodispersivity for density-dependent groundwater flow. Environmental Fluid Mechanics, 2014, https://doi.org/10.1007/s10652-013-9281-8.[2] Jiang, ZJ*; Mariethoz, G; Taulis, M; Cox, M. Determination of vertical hydraulic conductivity of aquitards in a multilayered leaky system using water-level signals in adjacent aquifers, Journal of Hydrology, 2013, https://doi.org/10.1016/j.jhydrol.2013.07.030[1] Jiang, ZJ*; Schrank, C; Mariethoz, G; Cox, M. Permeability estimation conditioned to geophysical downhole log data in sandstones of the northern Galilee Basin, Queensland: Methods and application. Journal of Applied Geophysics, 2013, https://doi.org/10.1016/j.jappgeo.2013.03.008 l  中文论文[7]许天福,陈敬宜,冯波, 姜振蛟*.地热资源开发过程中潜在地下水环境问题.吉林大学学报(地球科学版), 2023, 53(04): 1149-1162. [6]徐含英,姜振蛟*,许天福.基于单井注抽试验的增强型地热系统储层近井渗透率原位测试方法研究. 水文地质工程地质, 2023, 50(04): 50-58. [5]许天福,姜振蛟*,袁益龙.中深部地热资源开发利用研究现状与展望. 中国基础科学, 2023, 25(03): 11-22.[4]查恩爽,李家琪,许力文, 姜振蛟*.基于3D打印技术的裂隙渗流与传热可视化教学装置构建与应用.实验技术与管理,2023,40(02):134-139.[3]陈梦迪,姜振蛟*,霍晨琛.考虑矿层渗透系数非均质性和不确定性的砂岩型铀矿地浸采铀过程随机模拟与分析.水文地质工程地质,2023,50(02):63-72.[2]陈炫沂,姜振蛟*,徐含英.共和盆地干热岩体人工裂隙带结构的控热机理与产能优化.水文地质工程地质,2022,49(01):191-199.[1]那金,姜雪,姜振蛟*.康定-老榆林地热系统氢氧同位素迁移数值模拟分析. 地球科学, 2021, 46(07): 2646-2656.出版教材[1] 杜新强,姜振蛟,田海龙,罗建男. 地下水数值模拟(“十四五”时期水利类专业重点建设教材),中国水利水电出版社,2023 教育经历 [1] 2011.9 -- 2014.7 澳大利亚昆士兰理工大学       盆地水文地质       研究生班       博士学位 [2] 2008.9 -- 2011.7 吉林大学       水文学及水资源       研究生班毕业       硕士学位 [3] 2004.9 -- 2008.7 吉林大学       水文与水资源工程       本科毕业       学士学位 工作经历 [1] 2020.9 -- 至今 吉林大学      新能源与环境学院      教授 [2] 2016.9 -- 2020.8 吉林大学      新能源与环境学院      副教授 [3] 2014.8 -- 2016.8 吉林大学      新能源与环境学院      讲师      讲师 [4] 2017.10 -- 2019.9 澳大利亚联邦科工组织CSIRO      Land & Water      博士后      出站 [5] 2015.1 -- 2020.3 吉林大学      新能源与环境学院      博士后      出站

上一篇:张奕楠     下一篇:田海龙