发布日期:2024-04-08 浏览次数:次
何亚兵 85 教授 博士生导师 硕士生导师 曾获荣誉 : 浙江省中青年学科带头人,浙江省杰出青年基金获得者 性别 : 男 毕业院校 : 中国科学院长春应用化学研究所 学历 : 博士研究生毕业 学位 : 博士学位 在职信息 : 在岗 所在单位 : 化学与材料科学学院 入职时间 : 2012-12-18 学科 : 化学 办公地点 : 8-211 联系方式 : heyabing@zjnu.cn Email : heyabing@zjnu.cn 访问量 : 0000006080 最后更新时间 : 2024.3.30 同专业博导 同专业硕导 个人简介 基本信息何亚兵,博士,浙江师范大学化学与材料科学学院“双龙学者”特聘教授,硕士生和博士生导师,博士后合作导师,浙江省高校中青年学科带头人。入选爱思唯尔中国高被引学者(2022-2023年),全球前2%顶尖科学家榜单。2010年6月博士毕业于中国科学院长春应用化学研究所。主要从事多孔金属/氢键有机框架化合物的结构设计及其在气体存储与分离等领域的应用研究。先后主持国家自然科学基金青年科学基金、浙江省杰出青年基金、国家自然科学基金面上项目(2项),浙江省自然科学基金重大项目。在Chem. Soc. Rev., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Energy Environ. Sci., Coord. Chem. Soc., Chem. Commun., Chem. Eur. J., Inorg. Chem., J. Mater. Chem. A等学术期刊上发表SCI论文100余篇,H-index为53。 学习和工作经历2012.12-至今,浙江师范大学化学与材料科学学院,任教。主要从事多孔金属有机框架化合物的结构设计及其在气体存储与分离领域的应用研究。2010.10-2012.10,美国德克萨斯大学圣安东尼奥分校(UTSA)化学系,开展博士后科研工作,师从陈邦林教授。2004.09-2010.07,中国科学院长春应用化学研究所高分子物理与化学国家重点实验室,攻读博士学位,导师高连勋研究员。2001.07-2004.08,中国科学院长春应用化学研究所高分子物理与化学国家重点实验室,从事医药中间体的研发工作。 发表论文After joining ZJNU[1] Zhao, D.; Yu, K.; Han, X.; He, Y.*; Chen, B.*, Recent Progress in Use of Porous MOFs for Process-Efficient Hydrocarbon Separation, Luminescent Sensing, and Information Encryption. Chem. Commun. 2022, 58, 747-770.[2] Zhou, P.; Yue, L.; Wang, X.; Fan, L.; Chen, D.-L.*; He, Y.*, Improving Ethane/Ethylene Separation Performance of Isoreticular Metal-Organic Frameworks Via Substituent Engineering. ACS Appl. Mater. Interfaces 2021, 13, 54059-54068.[3] Zhou, P.; Wang, X.; Yue, L.; Fan, L.; He, Y.*, A Microporous MOF Constructed by Cross-Linking Helical Chains for Efficient Purification of Natural Gas and Ethylene. Inorg. Chem. 2021, 60, 14969-14977.[4] Xu, T.; He, M.; Fan, L.; Zhou, P.; Jiang, Z.; He, Y.*, Engineering Ligand Conformation by Substituent Manipulation Towards Diverse Copper-Tricarboxylate Frameworks with Tuned Gas Adsorption Properties. Dalton Trans. 2021, 50, 638-646.[5] Wang, X.; Yue, L.; Zhou, P.; Fan, L.; He, Y.*, Lanthanide-Organic Frameworks Featuring Three-Dimensional Inorganic Connectivity for Multi-Purpose Hydrocarbon Separation. Inorg. Chem. 2021, 60, 17249-17257.[6] Lin, S.; Zhou, P.; Xu, T.; Fan, L.; Wang, X.; Yue, L.; Jiang, Z.; Zhang, Y.*; Zhang, Z.; He, Y.*, Modulation of Topological Structures and Adsorption Properties of Copper-Tricarboxylate Frameworks Enabled by the Effect of Functional Group and Its Position. Inorg. Chem. 2021, 60, 8111-8122.[7] Lin, S.; Fan, L.; Zhou, P.; Xu, T.; Jiang, Z.; Hu, S.; Chen, J.; He, Y.*, An Isomeric Copper-Diisophthalate Framework Platform for Storage and Purification of C2H2 and Exploration of the Positional Effect of Methyl Group. Eur. J. Inorg. Chem. 2021, 2070-2077.[8] Jiang, Z.; Fan, L.; Zhou, P.; Xu, T.; Hu, S.; Chen, J.; Chen, D.-L*.; He, Y.*, An Aromatic-Rich Cage-Based MOF with Inorganic Chloride Ions Decorating the Pore Surface Displaying the Preferential Adsorption of C2H2 and C2H6 over C2H4. Inorg. Chem. Front. 2021, 8, 1243-1252.[9] Fan, L.; Zhou, P.; Wang, X.; Yue, L.; Li, L.*; He, Y.*, Rational Construction and Performance Regulation of an In(III)-Tetraisophthalate Framework for One-Step Adsorption-Phase Purification of C2H4 from C2 Hydrocarbons. Inorg. Chem. 2021, 60, 10819-10829.[10] Fan, L.; Yue, L.; Sun, W.; Wang, X.; Zhou, P.; Zhang, Y.; He, Y.*, Ligand Bent Angle Engineering for Tuning Topological Structures and Acetylene Purification Performances of Copper-Diisophthalate Frameworks. ACS Appl. Mater. Interfaces 2021, 13, 40788-40797.[11] Fan, L.; Lin, S.; Wang, X.; Yue, L.; Xu, T.; Jiang, Z.; He, Y.*, A Series of Metal-Organic Framework Isomers Based on Pyridinedicarboxylate Ligands: Diversified Selective Gas Adsorption and the Positional Effect of Methyl Functionality. Inorg. Chem. 2021, 60, 2704-2715.[12] Xu, T.; Jiang, Z.; Liu, P.; Chen, H.; Lan, X.; Chen, D.*; Li, L.*; He, Y.*, Immobilization of Oxygen Atoms in the Pores of Microporous Metal-Organic Frameworks for C2H2 Separation and Purification. ACS Appl. Nano Mater. 2020, 3, 2911-2919.[13] Xu, T.; Fan, L.; Zhou, P.; Chen, Z. J. H.; Lu, H.; He, Y., Construction and Selective Gas Adsorption Properties of Two HeteroSBU MOFs Based on Unsymmetrical Tetracarboxylate Linkers. CrystEngComm 2020, 22, 5961-5969.[14] Xu, T.; Fan, L.; Jiang, Z.; Zhou, P.; Li, Z.; Lu, H.; He, Y.*, Immobilization of N-Oxide Functionality into NbO-Type MOFs for Significantly Enhanced C2H2/CH4 and CO2/CH4 Separations. Dalton Trans. 2020, 49, 7174-7181.[15] Jiang, Z.; Zou, Y.; Xu, T.; Fan, L.; Zhou, P.; He, Y.*, A Hydrostable Cage-Based MOF with Open Metal Sites and Lewis Basic Sites Immobilized in Pore Surface for Efficient Separation and Purification of Natural Gas and C2H2. Dalton Trans. 2020, 49, 3553-3561.[16] Jiang, Z.; Zou, P.; Xu, T.; Fan, L.; Hu, S.; Chen, J.; He, Y.*, Two Co-Based MOFs Assembled from an Amine-Functionalized Pyridinecarboxylate Ligand: Inorganic Acid Directed Structural Variety and Gas Adsorption Properties. CrystEngComm 2020, 22, 3424-3431.[17] Jiang, Z.; Fan, L.; Zhou, P.; Xu, T.; Chen, J.; Hu, S.; Chen, D.-L.*; He, Y.*, A N-Oxide-Functionalized Nanocage-Based Copper-Tricarboxylate Framework for Selective Capture of C2H2. Dalton Trans. 2020, 49, 15672-15681.[18] Gao, X.; Zhong, H.; Zhang, Y.; Yao, Y.; Chen, D.-L.*; He, Y.*, A Microporous MOF with Inorganic Nitrate Ions Immobilized in Pore Surface Displaying Efficient C2H2 Separation and Purification. Eur. J. Inorg. Chem. 2020 , 1683-1689.[19] Xu, T.; Jiang, Z.; He, M.; Gao, X.; He, Y.*, Effect of Arrangement of Functional Groups on Stability and Gas Adsorption Properties in Two Regioisomeric Copper Bent Diisophthalate Frameworks. CrystEngComm 2019, 21, 4820-4827.[20] Xiao, Z.; Jiang, R.; Jin, J.; Yang, X.; Xu, B.; Liu, X.*; He, Y.*; He, Y.*, Diiron(II) Pentacarbonyl Complexes as Co-Releasing Molecules: Their Synthesis, Characterization, Co-Releasing Behaviour and Biocompatibility. Dalton Trans. 2019, 48, 468-477.[21] Wang, Y.; He, M.; Gao, X.; Wang, X.; Xu, G.*; Zhang, Z.; He, Y.*, A Ligand Conformation Preorganization Approach to Construct a Copper-Hexacarboxylate Framework with a Novel Topology for Selective Gas Adsorption. Inorg. Chem. Front. 2019, 6, 263-270.[22] Liu, X.; Xu, C.; Yang, X.; He, Y.; Guo, Z.*; Yan, D.*, An Amine Functionalized Carbazolic Porous Organic Framework for Selective Adsorption of CO2 and C2H2 over CH4. Microporous Mesoporous Mater. 2019, 275, 95–101.[23] Lin, R.-B.; He, Y.; Li, P.; Wang, H.; Zhou, W.; Chen, B.*, Multifunctional Porous Hydrogen-Bonded Organic Framework Materials. Chem. Soc. Rev. 2019, 48, 1362-1389.[24] He, M.; Xu, T.; Jiang, Z.; Yang, L.; Zou, Y.; Xia, F.; Wang, X.; Wang, X.; He, Y.*, Incorporation of Bifunctional Aminopyridine into a NbO-Type MOF for Markedly Enhanced Adsorption of CO2 and C2H2 over CH4. Inorg. Chem. Front. 2019, 6, 1177-1183.[25] He, M.; Xia, F.; Xu, T.; Gao, X.; Jiang, Z.; Wang, X.; He, Y.*, A Lactam-Functionalized Copper-Bent Diisophthalate Framework Displaying Significantly Enhanced Adsorption of CO2 and C2H2 over CH4. Dalton Trans. 2019, 48, 11374-11381.[26] He, M.; Jiang, T. X. Z.; Yu, X.; Zou, Y.; Yang, L.; Wang, X.; Wang, X.; He, Y.*, Two Copper-Based MOFs Constructed from a Linear Diisophthalate Linker: Supramolecular Isomerism and Gas Adsorption Properties. CrystEngComm 2019, 21, 3192-3198.[27] He, M.; Gao, X.; Xu, T.; Jiang, Z.; He, Y.*, Tailoring the Structures and Gas Adsorption Properties of Copper-Bent Diisophthalate Frameworks by a Substituent-Driven Ligand Conformation Regulation Strategy. CrystEngComm 2019, 21, 6733-6743.[28] Gao, X.; Xu, T.; Jiang, Z.; Yu, H.; Wang, Y.; He, Y.*, Rational Construction and Remarkable Gas Adsorption Properties of a HKUST-1-Like TbO-Type MOF Based on a Tetraisophthalate Linker. Dalton Trans. 2019, 48, 16793-16799.[29] Wang, Y.; He, M.; Tian, Z.; Zhong, H.; Zhu, L.; Zhang, Y.; Zhang, X.; Chen, D.-L.*; He, Y.*, Rational Construction of a Ssa-Type of MOF through Preorganizing the Ligand's Conformation and Its Exceptional Gas Adsorption Properties. Dalton Trans. 2018, 47, 2444-2452.[30] Wang, Y.; He, M.; Gao, X.; Zhang, Y.; Zhong, H.; Long, P.; Wang, X.; He, Y.*, Two NbO-Type MOFs Based on Linear and Zigzag Diisophthalate Ligands: Exploring the Effect of Ligand-Originated MOF Isomerization on Gas Adsorption Properties. Inorg. Chem. Front. 2018, 5, 2811-2817.[31] Wang, Y.; He, M.; Gao, X.; Long, P.; Zhang, Y.; Zhong, H.; Wang, X.; He, Y.*, Three Isoreticular Ssa-Type MOFs Derived from Bent Diisophthalate Ligands: Exploring the Substituent Effect on Structural Stabilities and Selective C2H2/CH4 and CO2/CH4 Adsorption Properties. Dalton Trans. 2018, 47, 12702-12710.[32] Wang, Y.; He, M.; Gao, X.; Li, S.; Xiong, S.-s.; Krishna, R.*; He, Y.*, Exploring the Effect of Ligand-Originated MOF Isomerism and Methoxy Group Functionalization on Selective Acetylene/Methane and Carbon Dioxide/Methane Adsorption Properties in Two NbO-Type MOFs. ACS Appl. Mater. Interfaces 2018, 10, 20559-20568.[33] Wang, Y.; He, M.; Gao, X.; Li, S.; He, Y.*, A Metal-Organic Framework Based on a Custom-Designed Diisophthalate Ligand Exhibiting Excellent Hydrostability and Highly Selective Adsorption of C2H2 and CO2 over CH4. Dalton Trans. 2018, 47, 7213 -7221.[34] Li, S.; Wu, J.; Gao, X.; He, M.; Wang, Y.; Wang, X.; He, Y.*, A NbO-Type MOF Based on an Aromatic-Rich and N-Functionalized Diisophthalate Ligand for High-Performance Acetylene Storage and Purification. CrystEngComm 2018, 20, 7178-7183.[35] Hu, X.; He, Y.; Wang, Z.*; Yan, J.*, Intrinsically Microporous Co-Polyimides Derived from Ortho-Substituted Tröger's Base Diamine with a Pendant Tert-Butyl-Phenyl Group and Their Gas Separation Performance. Polymer 2018, 153, 173-182.[36] He, Y.*; Chen, F.; Li, B.; Qian, G.; Zhou, W.; Chen, B.*, Porous Metal Organic Frameworks for Fuel Storage. Coord. Chem. Rev. 2018, 373, 167-198.[37] He, M.; Wang, Y.; Gao, X.; Li, S.; He, Y.*, Three Ligand-Originated MOF Isomers: The Positional Effect of the Methyl Group on Structures and Selective C2H2/CH4 and CO2/CH4 Adsorption Properties. Dalton Trans. 2018, 47, 8983-8991.[38] Chen, F.; Wang, Y.; Bai, D.; He, M.; Gao, X.; He, Y.*, Selective Adsorption of C2H2 and CO2 from CH4 in an Isoreticular Series of MOFs Constructed from Unsymmetrical Diisophthalate Linkers and the Effect of Alkoxy Group Functionalization on Gas Adsorption. J. Mater. Chem. A 2018, 6, 3471-3478.[39] Chen, F.; Bai, D.; Wang, Y.; He, M.; Gao, X.; He, Y.*, A Pair of Polymorphous Metal-Organic Frameworks Based on an Angular Diisophthalate Linker: Synthesis, Characterization and Gas Adsorption Properties. Dalton Trans. 2018, 47, 716-725.[40] Bai, D.; Wang, Y.; He, M.; Gao, X.; He, Y.*, Structural Diversities and Gas Adsorption Properties of a Family of Rod-Packing Lanthanide-Organic Frameworks Based on Cyclotriphosphazene-Functionalized Hexacarboxylate Derivatives. Inorg. Chem. Front. 2018, 5, 2227-2237.[41] Bai, D.; Gao, X.; He, M.; Wang, Y.; He, Y.*, Three Isoreticular MOFs Derived from Nitrogen-Functionalized Diisophthalate Ligands: Exploring the Positional Effect of Nitrogen Functional Sites on the Structural Stabilities and Selective C2H2/CH4 and CO2/CH4 Adsorption Properties. Inorg. Chem. Front. 2018, 5, 1423-1431.[42] Zhang, M.; Zhou, W.; Pham, T.; Forrest, K. A.; Liu, W.; He, Y.; Wu, H.; Yildirim, T.; Chen, B.; Space, B.; Pan, Y.; Zaworotko, M. J.; Bai, J., Fine Tuning of MOF-505 Analogues to Reduce Low Pressure Methane Uptake and Enhance Methane Working Capacity. Angew. Chem. Int. Ed. 2017, 56, 11426-11430.[43] Liu, Z.; Lv, L.; He, Y.*; Feng, Y.*, An Anionic Metal-Organic Framework Constructed from a Triazole-Functionalized Diisophthalate Featuring Hierarchical Cages for Selective Adsorptive C2H2/CH4 and CO2/CH4 Separation. CrystEngComm 2017, 19, 2795-2801.[44] Liu, H.; Chen, F.; Bai, D.; Jiao, J.; Zhou, W.; Yildirim, T.; He, Y.*, High-Pressure Methane Adsorption in Two Isoreticular Zr-Based Metal-Organic Frameworks Constructed from C3-Symmetrical Tricarboxylates. Cryst. Growth Des. 2017, 17, 248-254.[45] Jiao, J.; Jiang, D.; Chen, F.; Bai, D.; He, Y.*, A Porous Metal-Organic Framework Based on an Asymmetric Angular Diisophthalate for Selective Adsorption of C2H2 and CO2 over CH4. Dalton Trans. 2017, 46, 7813-7820.[46] Chen, F.; Bai, D.; Wang, Y.; Jiang, D.; He, Y.*, A Family of Ssa-Type Copper-Based MOFs Constructed from Unsymmetrical Diisophthalates: Synthesis, Characterization and Selective Gas Adsorption. Mater. Chem. Front. 2017, 1, 2283-2291.[47] Chen, F.; Bai, D.; Wang, X.; He, Y.*, A Comparative Study of the Effect of Functional Groups on C2H2 Adsorption in NbO-Type Metal-Organic Frameworks. Inorg. Chem. Front. 2017, 4, 960-967.[48] Chen, F.; Bai, D.; Jiang, D.; Wang, Y.; He, Y.*, A Comparative Study of C2H2 Adsorption Properties in Five Isomeric Copper-Based MOFs Based on Naphthalene-Derived Diisophthalates. Dalton Trans. 2017, 46, 11469 -11478.[49] Bai, D.; Chen, F.; Jiang, D.; He, Y.*, A Rare Pb9 Cluster-Organic Framework Constructed from a Flexible Cyclotriphosphazene-Functionalized Hexacarboxylate Exhibiting Selective Gas Separation. Inorg. Chem. Front. 2017, 4, 1501-1508.[50] Song, C.; Liu, H.; Jiao, J.; Bai, D.; Zhou, W.; Yildirim, T.; He, Y.*, High Methane Storage and Working Capacities in a NbO-Type Metal-Organic Framework. Dalton Trans. 2016, 45, 7559-7562.[51] Song, C.; Ling, Y.; Jin, L.; Zhang, M.; Chen, D.-L.*; He, Y.*, CO2 Adsorption of Three Isostructural Metal-Organic Frameworks Depending on the Incorporated Highly Polarized Heterocyclic Moieties. Dalton Trans. 2016, 45, 190-197.[52] Song, C.; Jiao, J.; Lin, Q.; Liu, H.; He, Y.*, C2H2 Adsorption in Three Isostructural Metal-Organic Frameworks: Boosting C2H2 Uptake by Rational Arrangement of Nitrogen Sites. Dalton Trans. 2016, 45, 4563-4569.[53] Liu, H.; He, Y.*; Jiao, J.; Bai, D.; Chen, D.-l.; Krishna, R.*; Chen, B.*, A Porous Zirconium-Based Metal-Organic Framework with the Potential for the Separation of Butene Isomers. Chem. Eur. J. 2016, 22, 14988-14997.[54] Ling, Y.; Liu, H.; Jiao, J.; Feng, Y.; He, Y.*, Synthesis, Characterization and Luminescence Modulation of a Metal-Organic Framework Based on a Cyclotriphosphazene Functionalized Multicarboxylate Ligand. ChemPlusChem 2016, 81, 786-791.[55] Ling, Y.; Jiao, J.; Zhang, M.; Liu, H.; Bai, D.; Feng, Y.; He, Y.*, A Porous Lanthanide Metal-Organic Framework Based on a Flexible Cyclotriphosphazene-Functionalized Hexacarboxylate Exhibiting Selective Gas Adsorption. CrystEngComm 2016, 18, 6254-6261.[56] Ling, Y.; Bai, D.; Feng, Y.; He, Y.*, Alkaline Earth-Based Coordination Polymers Derived from a Cyclotriphosphazene-Functionalized Hexacarboxylate. J. Solid State Chem. 2016, 242, 47-54.[57] Jiao, J.; Liu, H.; Chen, F.; Bai, D.; Xiong, S.*; He, Y.*, An Anionic Metal-Organic Framework Based on an Angular Tetracarboxylic Acid and Mononuclear Copper Ion for Selective Gas Adsorption. Inorg. Chem. Front. 2016, 3, 1411-1418.[58] Jiao, J.; Liu, H.; Bai, D.; He, Y.*, A Chemically Cross-Linked NbO-Type Metal-Organic Framework: Cage or Window Partition? Inorg. Chem. 2016, 55, 3974-3979.[59] Jiao, J.; Dou, L.; Liu, H.; Chen, F.; Bai, D.; Feng, Y.; Xiong, S.*; Chen, D.-L.*; He, Y.*, An Aminopyrimidine-Functionalized Cage-Based Metal-Organic Framework Exhibiting Highly Selective Adsorption of C2H2 and CO2 over CH4. Dalton Trans. 2016, 45, 13373-13382.[60] Chen, F.; Ling, Y.; Song, C.; He, Y.; Lan, Y.; Feng, Y., Lanthanide-Organic Frameworks Constructed from an Unsymmetrical Tricarboxylate for Selective Gas Adsorption and Small-Molecule Sensing. Eur. J. Inorg. Chem. 2016, 503-508.[61] Song, C.; Ling, Y.; Feng, Y.; Zhou, W.; Yildirim, T.; He, Y.*, A NbO-Type Metal-Organic Framework Exhibiting High Deliverable Capacity for Methane Storage. Chem. Commun. 2015, 51, 8508-8511.[62] Song, C.; Hu, J.; Ling, Y.; Feng, Y.; Krishna, R.*; Chen, D.-l.*; He, Y.*, The Accessibility of Nitrogen Sites Makes Difference to Selective CO2 Adsorption in a Family of Isostructural Metal-Organic Frameworks. J. Mater. Chem. A 2015, 3, 19417-19426.[63] Song, C.; Hu, J.; Ling, Y.; Feng, Y.; Chen, D.-L.*; He, Y.*, Merging Open Metal Sites and Lewis Basic Sites in a Nbo-Type Metal-Organic Framework for Improved C2H2/CH4 and CO2/CH4 Separation. Dalton Trans. 2015, 44, 14823-14829.[64] Ling, Y.; Song, C.; Feng, Y.; Zhang, M.; He, Y.*, A Metal-Organic Framework Based on Cyclotriphosphazene Functionalized Hexacarboxylate for Selective Adsorption of CO2 and C2H6 from CH4 at Room Temperature. CrystEngComm 2015, 17, 6314-6319.[65] Li, P.; He, Y.; Zhao, Y.; Weng, L.; Wang, H.; Krishna, R.; Wu, H.; Zhou, W.; O'Keeffe, M.; Han, Y.; Chen, B.*, A Rod-Packing Microporous Hydrogen-Bonded Organic Framework for Highly Selective Separation of C2H2/CO2 at Room Temperature. Angew. Chem. Int. Ed. 2015, 54, 574-577.[66] Song, C.; He, Y.*; Li, B.; Ling, Y.; Wang, H.; Feng, Y.; Krishna, R.; Chen, B.*, Enhanced CO2 Sorption and Selectivity by Functionalization of a NbO-Type Metal-Organic Framework with Polarized Benzothiadiazole Moieties. Chem. Commun. 2014, 50, 12105-12108.[67] Li, P.; He, Y.; Guang, J.; Weng, L.; Zhao, J. C.-G.; Xiang, S.; Chen, B.*, A Homochiral Microporous Hydrogen-Bonded Organic Framework for Highly Enantioselective Separation of Secondary Alcohols. J. Am. Chem. Soc. 2014, 136, 547-549.[68] Li, P.; He, Y.; Arman, H. D.; Krishna, R.; Wang, H.; Weng, L.; Chen, B.*, A Microporous Six-Fold Interpenetrated Hydrogenbonded Organic Framework for Highly Selective Separation of C2H4/C2H6. Chem. Commun. 2014, 50, 13081-13084.[69] He, Y.; Zhou, W.; Qian, G.; Chen, B., Methane Storage in Metal-Organic Frameworks. Chem. Soc. Rev. 2014, 43, 5657-5678.[70] He, Y.*; Song, C.; Ling, Y.; Wu, C.; Krishna, R.; Chen, B.*, A New MOF-5 Homologue for Selective Separation of Methane from C2 Hydrocarbons at Room Temperature. APL Mater. 2014, 2, 124102.[71] He, Y.; Li, B.; O'Keeffe, M.; Chen, B.*, Multifunctional Metal-Organic Frameworks Constructed from Meta-Benzenedicarboxylate Units. Chem. Soc. Rev. 2014, 43, 5618-5656.[72] He, Y.; Zhou, W.; Yildirim, T.; Chen, B.*, A Series of Metal-Organic Frameworks with High Methane Uptake and an Empirical Equation for Predicting Methane Storage Capacity. Energy Environ. Sci. 2013, 6, 2735-2744.[73] He, Y.; Xiang, S.; Zhang, Z.; Xiong, S.; Wu, C.; Zhou, W.; Yildirim, T.; Krishna, R.*; Chen, B.*, A Microporous Metal-Organic Framework Assembled from an Aromatic Tetracarboxylate for H2 Purification. J. Mater. Chem. A 2013, 1, 2543-2551.[74] He, Y.*; Guo, Z.; Xiang, S.; Zhang, Z.; Zhou, W.; Fronczek, F. R.; Parkin, S.; Hyde, S. T.; O'Keeffe, M.; Chen, B.*, Metastable Interwoven Mesoporous Metal-Organic Frameworks. Inorg. Chem. 2013, 52, 11580-11584.[75] He, Y.*; Furukawa, H.; Wu, C.; O'Keeffe, M.; Krishna, R.; Chen, B.*, Low-Energy Regeneration and High Productivity in a Lanthanide-Hexacarboxylate Framework for High-Pressure CO2-CH4-H2 Separation. Chem. Commun. 2013, 49, 6773-6775.[76] He, Y.*; Furukawa, H.; Wu, C.; O'Keeffe, M.; Chen, B.*, A Mesoporous Lanthanide-Organic Framework Constructed from a Dendritic Hexacarboxylate with Cages of 2.4 nm. CrystEngComm 2013, 15, 9328-9331.Before joining ZJNU[1] Xiang, S.; He, Y.; Zhang, Z.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B.*, Microporous Metal-Organic Framework with Potential for Carbon Dioxide Capture at Ambient Conditions. Nat. Commun. 2012, 3, 954.[2] He, Y.; Zhou, W.; Krishna, R.; Chen, B.*, Microporous Metal-Organic Frameworks for Storage and Separation of Small Hydrocarbons. Chem. Commun. 2012, 48, 11813-11831.[3] He, Y.; Zhang, Z.; Xiang, S.; Wu, H.; Fronczek, F. R.; Zhou, W.; Krishna, R.*; O'Keeffe, M.; Chen, B.*, High Separation Capacity and Selectivity of C2 Hydrocarbons over Methane within a Microporous Metal-Organic Framework at Room Temperature. Chem. Eur. J. 2012, 18, 1901-1904.[4] He, Y.; Zhang, Z.; Xiang, S.; Fronczek, F. R.; Krishna, R.*; Chen, B.*, A Robust Doubly Interpenetrated Metal-Organic Framework Constructed from a Novel Aromatic Tricarboxylate for Highly Selective Separation of Small Hydrocarbons. Chem. Commun. 2012, 48, 6493-6495.[5] He, Y.; Zhang, Z.; Xiang, S.; Fronczek, F. R.; Krishna, R.*; Chen, B.*, A Microporous Metal-Organic Framework for Highly Selective Separation of Acetylene, Ethylene and Ethane from Methane at Room Temperature. Chem. Eur. J. 2012, 18, 613-619.[6] He, Y.; Xiang, S.; Zhang, Z.; Xiong, S.; Fronczek, F. R.; Krishna, R.*; O'Keeffee, M.; Chen, B.*, A Microporous Lanthanide-Tricarboxylate Framework with the Potential for Purification of Natural Gas. Chem. Commun. 2012, 48, 10856-10858.[7] He, Y.; Krishna, R.; Chen, B., Metal-Organic Frameworks with Potential for Energy-Efficient Adsorptive Separation of Light Hydrocarbons. Energy Environ. Sci. 2012, 5, 9107-9120[8] Das, M. C.; Guo, Q.; He, Y.; Kim, J.; Zhao, C.-G.; Hong, K.; Xiang, S.; Zhang, Z.; Thomas, K. M.; Krishna, R.*; Chen, B.*, Interplay of Metalloligand and Organic Ligand to Tune Micropores within Isostructural Mixed-Metal Organic Frameworks (M'MOFs) for Their Highly Selective Separation of Chiral and Achiral Small Molecules. J. Am. Chem. Soc. 2012, 134, 8703-8710.[9] He, Y.; Xiang, S.; Chen, B.*, A Microporous Hydrogen-Bonded Organic Framework for Highly Selective C2H2/C2H4 Separation at Ambient Temperature. J. Am. Chem. Soc. 2011, 133, 14570-14573.[10] He, Y.; Bian, Z.*; Kang, C.; Gao, L.*, Self-Discriminating and Hierarchical Assembly of Racemic Binaphthyl-Bisbipyridines and Silver Ions: From Metallocycles to Gel Nanofibers. Chem. Commun. 2011, 47, 1589-1591.[11] He, Y.; Bian, Z.*; Kang, C.; Gao, L.*, Stereoselective and Hierarchical Self-Assembly from Nanotubular Homochiral Helical Coordination Polymers to Supramolecular Gels. Chem. Commun. 2010, 46, 5695-5697.[12] He, Y.; Bian, Z.*; Kang, C.; Cheng, Y.; Gao, L.*, Novel C3-Symmetrical Triphenylbenzene-Based Organogelators with Different Linkers between Phenyl Ring and Alkyl Chain. Tetrahedron 2010, 66, 3553-3563.[13] He, Y.; Bian, Z.*; Kang, C.; Cheng, Y.; Gao, L.*, Chiral Binaphthylbisbipyridine-Based Copper(I) Coordination Polymer Gels as Supramolecular Catalysts. Chem. Commun. 2010, 46, 3532-3534.[14] He, Y.; Bian, Z.*; Kang, C.; Jin, R.; Gao, L.*, Ultrasound-Promoted Chiral Fluorescent Organogel. New J. Chem. 2009, 33, 2073-2080. 教师其他联系方式 邮编 : 321004 通讯/办公地址 : 浙江师范大学化材学院8幢211室 办公室电话 : 0579-82282780 邮箱 : heyabing@zjnu.cn 教育经历 2004.9 -- 2010.7 中国科学院长春应用化学研究所 有机化学 博士研究生毕业 博士学位 1997.9 -- 2001.7 湖北大学 应用化学 大学本科毕业 学士学位 工作经历 2010.10 -- 2012.10 美国德克萨斯大学圣安东尼奥分校UTSA 化学系 2001.7 -- 2004.8 中国科学院长春应用化学研究所 高分子工程实验室 团队成员 多功能框架材料