发布日期:2024-04-06 浏览次数:次
荣誉获奖 Awards Information 国家高层次青年人才2015年,国家自然科学二等奖,机械结构系统的整体式构型设计理论与方法研究2019年,陕西省自然科学一等奖,飞行器结构高性能设计制造的特征保形理论与方法研究2023年,中国航空学会技术发明一等奖,飞行器大型复材结构高性能精确固化成型技术及应用2023年,陕西省重点科技创新团队负责人,航宇大型复材结构高性能精确成型技术创新团队2023年,中国航空学会青年科技奖
科学研究 Scientific Research 研究方向:航空航天复材结构成型工艺力学和优化的基础和应用研究 。科研项目:2021.12-2026.11 国家重点研发计划 超大尺寸复材机翼整体壁板高性能精确成型方法研究2023.01-2027.12 国家自然基金重点项目 大型复材薄壁构件固化成型建模分析与结构/工艺协同优化2023.12-2024.11 重大基础研究课题 复合材料承载结构轻量化设计与验证2022.01-2024.12 重大基础研究课题 复合材料壳体2022.09-2022.12 中航西安飞机工业集团公司 芳纶预浸料工艺性能研究2022.05-2022.08 西安空间无线电技术研究所 高精度天线复合材料结构固化预变形仿真分析系统2022.01-2022.06 中航工业西安飞行自动控制研究所 复合材料结构成型工艺技术2021.03-2021.12 中航西安飞机工业集团公司 复合材料零件固化变形分析2021.01-2021.12 一带一路航天创新联盟项目 复合材料固化工艺与损伤的一体化分析2020.11-2021.07 中航工业西安飞行自动控制研究所 复合材料结构设计与制造2019.01-2022.12 国家自然科学基金 聚碳酸酯构件注塑成型-冲击响应的一体化计算与优化设计2018.11-2019.10 前沿创新项目 XXX轻质复合2018.01-2018.10 中航飞机股份有限公司 复合材料加筋壁板热压罐成型固化变形分析技术研究2018.01-2018.12 中航飞机股份有限公司 复合材料成型模具整体强度与温度分布的模拟计算和设计2017.07-2020.12 国家重点研发计划课题 复杂载荷工况下增材制造整体结构拓扑优化技术 2017.07-2018.06 前沿创新项目 XXX材料性能表征与结构设计方法研究2017.01-2019.12 重大基础研究专题 XXX复合材料薄壁结构热屈曲试验与分析方法 2017.01-2018.12 陕西省科技计划项目 高聚物材料的成型-性能一体化分析与设计2017.01-2018.12 中央高校基本科研业务费项目 飞机复合材料大型主承力构件整体成型变形与缺陷控制技术2016.01-2017.12 陕西省科技计划项目 形状记忆合金纤维增强聚合物基复合材料制备与设计的关键技术2015.01-2015.08 航天四院 复合材料扩张段预制体性能分析与优化设计2014.01-2016.12 国家自然科学基金 考虑对流边界条件设计相关效应的热力耦合结构拓扑优化2013.10-2014.12 航天四院 柔性接头、扩张段热氧老化计算分析2012.01-2016.08 国家重点基础研究课题 高聚物制品结构性能和服役行为的跨尺度预测和验证
学术成果 Academic Achievements 专著[1] W.H. Zhang, Y.J. Xu. Mechanical Properties of Polycarbonate. ISTE Press & ELSEVIER. ISBN: 978-1-78630-313-4.期刊论文[1] X.Y. Hui, Y.J. Xu*, J.W. Niu, W.H. Zhang. Rapid evaluation and prediction of cure-induced residual stress of composites based on cGAN deep learning model. Composite Structures, 2024, 117827.[2] J.S.Y. Cheng, Y.J. Xu*, W.H. Zhang, W.W. Liu. A multiscale study on warpage of multi-pinned composites induced by curing process. Composite Structures, 2023, under review.[3] X.B. Teng, Y.J. Xu*, W.H. Zhang, W.W. Liu. Comparative study of delamination behavior of composite laminates with different curvatures reinforced by pre-hole z-pinning technique (PHZ). Composites Science and Technology, 2023, under review.[4] S.N. Zhang, Y.J. Xu*, W.H. Zhang. Experimental and numerical study on the influence of cure process on the bridging traction mechanism of z-pins. International Journal of Mechanical Sciences, 2023, 108096.[5] J.S.Y. Cheng, Y.J. Xu*, W.H. Zhang, W.W. Liu. Multiscale modelling of curing-induced z-pin/composite interfacial cracks. International Journal of Mechanical Sciences, 2023, 107924.[6] X.B. Teng, Y.J. Xu*, W.H. Zhang, X.Y. Hui, W.W. Liu, C.Y. Ma. Improving Mode Ⅱ delamination resistance of curved CFRP laminates by a pre-hole Z-pinning (PHZ) process. Chinese Journal of Aeronautics, 2023, 36: 316-324.[7] D.S. Jia, P.C. Feng, L.D. Wang, L.C. Chen, J. Wang, J.H. Zhu, Y.J. Xu*, W.H. Zhang. An origami shield with supporting frame structures optimized by a feature-driven topology optimization method. Defence Technology, 2023, doi.org/10.1016/j.dt.2023.02.022[8] 王亮迪;许英杰*;王骏;刘艳龙. 形状记忆合金增强复合材料力学实验分析. 航空兵器, 2023, 30(2): 70-76.[9] 孟翠翠;徐小伟;何煜文;董浪;许英杰*.大尺寸泡沫填充帽型复合材料加筋壁板成型工艺研究. 航空兵器, 2023(02): 59-63.[10] 刘琦;唐珊珊;王小凯;郭俊刚;牛建文; 许英杰*. 芳纶铺层-蜂窝夹芯U型前缘固化变形仿真计算模型与验证. 复合材料科学与工程, 2023, 录用.[11] Y.T. Liu, Y.L. Hou, T. Sapanathan, L. Meng, Y.J. Xu. Multiscale modeling of the mechanical behavior of 3D braided CFRP composites under uniaxial tension. Composite Structures, 2023, 116601.[12] X.Y. Hui, Y.J. Xu*, W.C. Zhang, W.H. Zhang. Multiscale collaborative optimization for the thermochemical and thermomechanical cure process during composite manufacture. Composites Science and Technology, 2022, 224: 109455.[13] X.B. Teng, Y.J. Xu*, W.H. Zhang, W.W. Liu. The use of pre-hole Z-pinning (PHZ) method to improve the impact resistance and post-impact flexural performance of composite skin/stringer joints. Thin-Walled Structures, 2022, 180, 109909.[14] X.B. Teng, Y.J. Xu*, X.Y. Hui, W.H. Zhang, H.C. Dai, W.W. Liu, C.Y. Ma, Y.J. Li. Experimental study on the low-velocity impact and post-impact properties of curved CFRP laminates reinforced by pre-hole Z-pinning (PHZ) technique. Mechanics of Advanced Materials and Structures, 2022, doi.org/10.1080/15376494.2022.2077485.[15] B. Yue, Y.J. Xu*, W.H. Zhang. A novel topology optimization of the frame mold for composite autoclave process. Applied Composite Materials, 2022, 29:2343–2365.[16] S.N. Zhang, Y.J. Xu*, W.H. Zhang. A novel micromechanical model to study the influence of cure process on the in-plane tensile properties of z-pinned laminates. Composite Structures, 2022, 300, 116156.[17] W.Y. Tang, Y.J. Xu*, X.Y. Hui, W.C. Zhang. Multi-objective optimization of curing profile for autoclave processed composites: Simultaneous control of curing time and process-induced defects. Polymers, 2022, 14: 2815.[18] J.S.Y. Cheng, Y.J. Xu*, W.H. Zhang, W.W. Liu. A review on the multi-scale simulation of Z-pinned composite laminates. Composite Structures, 2022, 295: 115834.[19] X.Y. Hui, Y.J. Xu*, W.C. Zhang, W.H. Zhang. Cure process evaluation of CFRP composites via neural network: From cure kinetics to thermochemical coupling. Composite Structures, 2022, 288: 115341.[20] S.N. Zhang, Y.J. Xu*, W.H. Zhang, X.Y. Hui. Micro-mechanical modeling study of the influence of cure process on the interfacial cracking of Z-pinned laminates. Composite Structures, 2022, 280: 114889.[21] Y.L. Hou, L. Meng*, G.H. Li, Y.J. Xu*. An insight into the mechanical behavior of adhesively bonded plain-woven-composite joints using multiscale modeling. International Journal of Mechanical Sciences, 2022, 219, 107063.[22] J. Wang, Y.F. Cao, Y.J. Xu*, X.J. Gu, J.H. Zhu, W.H. Zhang. Finite element modeling of the damping capacity and vibration behavior of cellular shape memory alloy. Mechanics of Advanced Materials and Structures, 2022, 29 (15): 2142-2155.[23] L.D. Wang, J. Wang, Y.J. Xu, J.H. Zhu, W.H. Zhang. Free vibration of pseudoelastic NiTi wire: finite element modeling and numerical design. 2022, doi.org/10.1080/15376494.2022.2121990.[24] 高腾龙;余建虎;许英杰. 碳纤维/环氧树脂预浸料固化动力学建模研究. 机械科学与技术, 2022(07): 1128-1135.[25] X.Y. Hui, Y.J. Xu*, W.H. Zhang. Microscale viscoplastic analysis of unidirectional CFRP composites under the influence of curing process. Composite Structures, 2021, 266: 113786.[26] X.Y. Hui, Y.J. Xu*, W.H. Zhang. An integrated modeling of the curing process and transverse tensile damage of unidirectional CFRP composites. Composite Structures, 2021, 263: 113681.[27] W.C. Zhang, Y.J. Xu*, X.Y. Hui, W.H. Zhang. A multi-dwell temperature profile design for the cure of thick CFRP composite laminates. International Journal of Advanced Manufacturing Technology, 2021, 117, 1133-1146.[28] Y.L. Hou, L. Meng*, G.H. Li, L. Xia, Y.J. Xu*. A novel multiscale modeling strategy of the low-velocity impact behavior of plain woven composites. Composite Structures, 2021, 274: 114363.[29] J Wang, X Gu, Y Xu, J Zhu, W Zhang. Thermomechanical modeling of nonlinear internal hysteresis due to incomplete phase transformation in pseudoelastic shape memory alloys. Nonlinear Dynamics, 2021, 103 (2): 1393-1414.[30] 许英杰*, 孙勇毅, 杨儒童, 张卫红. 考虑强度与固化变形的复合材料加筋壁板铺层优化方法. 计算力学学报, 2021, 38(3): 297-304.[31] 岳波, 许英杰*, 徐宁鑫, 张卫红. 热压罐成型框架式模具结构拓扑优化设计. 航空学报, 2022, 43(3): 425141-425141.[32] 唐闻远, 许英杰*, 孙勇毅, 张卫红, 惠新育. 基于温度曲线优化的复合材料热压罐固化时间与固化质量协同控制. 材料工程, 2021, 49 (9): 142-150.[33] X.Y. Hui, Y.J. Xu*, W.H. Zhang. Multi-scale modeling of micro curing residual stresses evolution in carbon fiber reinforced thermoset polymer composites. Frontiers of Mechanical Engineering, 2020, 15: 475-483.[34] 孙勇毅, 许英杰*, 唐闻远, 惠新育, 张卫红. 共固化成型复合材料加筋壁板的固化变形仿真技术研究. 航空制造技术, 2022, 65(004): 107-120.[35] 赵安安, 杨昊彤, 岳明, 郝巨, 许英杰*, 张卫红. 模具结构对热压罐成型过程中模具温均性与热变形的影响分析. 材料科学与工程学报, 2020, 38(06): 869-875.[36] 元振毅, 许英杰, 杨癸庚, 等. 基于多场耦合方法的厚截面复合材料固化过程优化. 复合材料学报, 2021, 38(2): 1-10.[37] J. Wang, X.C. Ren, Y.J. Xu*, W.H. Zhang, J.H. Zhu, B. Li. Thermodynamic behavior of NiTi shape memory alloy against low-velocity impact: experiment and simulation. International Journal of Impact Engineering, 2020, 139: 103532.[38] X.J. Gu, X.Z. Su, J. Wang, Y.J. Xu*, J.H. Zhu, W.H. Zhang. Improvement of impact resistance of plain-woven composite by embedding superelastic shape memory alloy wires. Frontiers of Mechanical Engineering, 2020, 15 (4): 547-557. [39] X.Y. Hui, Y.J. Xu*, Y.L. Hou. A coupled micro-meso-scale study on the damage mechanism of 2D SiC/SiC ceramic matrix composites. Mechanics of Advanced Materials and Structures, 2021, 28: 2083-2095.[40] S. Wang, J. Wang, Y.J. Xu*, W.H. Zhang, J.H. Zhu. Compressive behavior and energy absorption of polymeric lattice structures made by additive manufacturing. Frontiers of Mechanical Engineering, 2020, 15: 319-327.[41] S.Q. Yuan, J. Li, X.L. Yao, J.H. Zhu, X.J. Gu, T. Gao, Y.J. Xu, W.H. Zhang. Intelligent optimization system for powder bed fusion of processable thermoplastics. Additive Manufacturing. 2020, 34(43): 101182.[42] Y.J. Xu, N.X. Xu, W.H. Zhang, J.H. Zhu. A multi-layer integrated thermal protection system with C/SiC composite and Ti alloy lattice sandwich. Composite Structures, 2019, 230: 111507.[43] Z.W. Sun, Y.J. Xu*, W.Z. Wang. Experimentation of the Bilinear Elastic Behavior of Plain-Woven GFRP Composite with Embedded SMA Wires. Polymers, 2019, 11(3): 405.[44] J. Wang, Y.J. Xu*, W.H. Zhang, X.C. Ren. Thermomechanical Modeling of Amorphous Glassy Polymer Undergoing Large Viscoplastic Deformation: 3-Points Bending and Gas-Blow Forming. Polymers, 2019, 11(4), 654.[45] J. Wang, Y.J. Xu*, W.H. Zhang, W.Z. Wang. A finite-strain thermomechanical model for severe superplastic deformation of Ti-6Al-4V at elevated temperature. Journal of Alloys and Compounds, 2019, 787: 1336-1344.[46] Wang J, Zhang W*, Zhu J*, Xu Y, Gu X, Moumni Z. Finite element simulation of thermomechanical training on functional stability of shape memory alloy wave spring actuator. Journal of Intelligent Material Systems and Structures. 2019;30(8):1239-1251.[47] J.H. Zhu*, Y.B. Zhao, W.H.* Zhang, X.J. Gu, T. Gao, J. Kong, G.H Shi., Y.J. Xu, D.L. Quan. Bio-Inspired Feature-Driven Topology Optimization for Rudder Structure Design. Engineered Science, 2019, 5: 46-55.[48] 惠新育, 许英杰*, 张卫红, 何宗倍. 平纹编织SiC/SiC复合材料多尺度建模及强度预测. 复合材料学报, 2019, 36(10): 2380-2388.[49] 任旋畅, 王骏, 许英杰*, 张卫红. 形状记忆合金薄板低速冲击载荷下热力耦合行为分析. 航空材料学报, 2019, 39: 35-43.[50] 贾东升, 高彤, 唐磊, 许英杰*. 热压罐成型复合材料所用框架式模具热弹性耦合优化设计. 航空制造技术, 2019, 21: 79-82.[51] Y.J. Xu, S.X. Ren, W.H. Zhang. Thermal conductivities of plain woven C/SiC composite: Micromechanical model considering PyC interphase thermal conductance and manufacture-induced voids. Composite Structures, 2018, 193: 212-223.[52] Y.J. Xu, J.H. Zhu, Z. Wu, J.F. Cao, Y.B. Zhao, W.H. Zhang. A review on the design of laminated composite structures: constant and variable stiffness design and topology optimization. Advanced Composites and Hybrid Materials, 2018, 1(3): 460-477.[53] Y.J. Xu, S.X. Ren, W.H. Zhang, Z.Q. Wu, W.R. Gong, H.B. Li. Study of thermal buckling behavior of plain woven C/SiC composite plate using digital image correlation technique and finite element simulation. Thin-Walled Structures, 2018, 131: 385-392.[54] J. Wang, Y.J. Xu*, T.L. Gao, W.H. Zhang, Z. Moumni. A 3D thermomechanical constitutive model for polycarbonate and its application in ballistic simulation. Polymer Engineering & Science, 2018, 58: 2237-2248.[55] U. Ahmed Dar*, Y.J. Xu, S. Muhammad Zakir, M.U. Saeed. The effect of injection molding process parameters on mechanical and fracture behavior of polycarbonate polymer. Journal of Applied Polymer Science, 2017, 134, 44474.[56] Wang J, Moumni Z, Zhang WH, Xu YJ, Zaki W. A 3D finite-strain-based constitutive model for shape memory alloys accounting for thermomechanical coupling and martensite reorientation. Smart Materials and Structures, 2017, 26(6): 065006.[57] Y.J. Xu, T.L. Gao, W.H. Zhang. Experimentation and modeling of the tension behavior of polycarbonate at high strain rates. Polymers, 2016, 8(3), 63.[58] J. Wang, Y.J. Xu, W.H. Zhang, Z. Moumni. A new damage-based model for the non-linear behavior of polycarbonate polymers. Material & Design, 2016, 97, 519–531.[59] Y.J. Xu, H. Lu, W.H. Zhang. Processing-induced inhomogeneity of yield stress in polycarbonate product and its influence on the impact behavior. Polymers, 2016, 8(3), 72.[60] Y.J. Xu, H. Lu, T.L. Gao, W.H. Zhang. Predicting the low-velocity impacted behavior of polycarbonate: influence of thermal history during injection molding. International Journal of Impact Engineering, 2015, 86: 265-273.[61] Y.J. Xu, Q. W. Zhang, W.H. Zhang, P. Zhang. Optimization of Injection Molding Process Parameters to Improve the Mechanical Performance of Polymer Product against Impact. International Journal of Advanced Manufacturing Technology, 2015, 76: 2199-2208.[62] Y.J. Xu, P. Zhang, W.H. Zhang. Numerical modeling of oxidized C/SiC microcomposite in air oxidizing environments below 800°C: microstructure and mechanical behavior. Journal of the European Ceramic Society, 2015, 35: 3401-3409.[63] Y.J. Xu, P. Zhang, H. Lu, W.H. Zhang. Hierarchically modeling the elastic properties of 2D needled carbon/carbon composites. Composite Structures, 2015, 133: 148-156.[64] Y.J. Xu, P. Zhang, W.H. Zhang. Two-scale micromechanical modeling of the time dependent relaxation modulus of plain weave polymer matrix composites. Composite Structures, 2015, 123: 35-44. [65] 张盼,许英杰,汪海滨, 顾靖伟. 基于粘弹性本构模型的双搭接胶结接头应力分析. 应用数学和力学, 2015, 36(2): 159-166.[66] J. Wang, Y.J. Xu*, W.H. Zhang. Finite element simulation of PMMA aircraft windshield against bird strike by using a rate and temperature dependent viscoelastic constitutive model. Composite Structures, 2014, 108: 21-30.[67] U.A. Dar, W. H. Zhang, Y. J. Xu. Thermal and strain rate sensitive compressive behavior of Polycarbonate polymer - Experimental and constitutive analysis. Journal of Polymer Research, 2014, 21: 519-530.[68] U.A. Dar, W. H. Zhang, Y. J. Xu. Numerical implementation of strain rate dependent thermo viscoelastic constitutive relation to simulate the mechanical behavior of PMMA. International Journal of Mechanics and Materials in Design, 2014, 10: 93-107. [69] A. Uzair, W. H. Zhang, Y. J. Xu. FE Analysis of Dynamic Response of Aircraft Windshield against Bird Impact. International Journal of Aerospace Engineering, 2013, Article ID 171768.[70] 张卫红,段文东,许英杰,朱继宏. 六边形蜂窝等效面外剪切模量预测及其尺寸效应. 力学学报 , 2013, (02): 288-292.[71] T. You, Y.J. Xu*. An efficient global/multi-local stress analysis of complicated engineering composite structures using multi-goal MapReduce. Computational Materials Science, 2012, 65: 149-156.[72] [73] Y.J. Xu, W.H. Zhang. A strain energy model for the prediction of the effective coefficient of thermal expansion of composite materials. Computational Materials Science, 2012, 53: 241-250. [74] Y.J. Xu, W.H. Zhang, D. Chamoret, M. Domaszewski. Minimizing thermal residual stresses in C/SiC functionally graded material coating of C/C Composites by using particle swarm optimization algorithm. Computational Materials Science, 2012, 61: 99-105. [75] Y.J. Xu, W.H. Zhang. Numerical modelling of oxidized microstructure and degraded properties of 2D C/SiC composite in oxidizing environments below 800°C. Materials Science and Engineering A, 2011, 528: 7974-7982. [76] Y.J. Xu, W.H. Zhang, M. Domaszewski. Microstructure modelling and prediction of effective elastic properties of 3D multiphase and multilayer braided composite. Materials Science and Technology, 2011, 27(7): 1213-1221. [77] Y.J. Xu, W.H. Zhang, D. Bassir. Stress analysis of multi-phase and multi-layer plain weave composite structure using global-local approach. Composite Structures, 2010, 92: 1143-1154.[78] Y.J. Xu, W.H. Zhang. Numerical prediction of the effective coefficient of thermal expansion of 3D braided C/SiC composite. International Journal for Simulation and Multidisciplinary Design Optimization, 2009, 3(4): 443-448.[79] Y.J. Xu, W.H. Zhang, H.B. Wang. Prediction of Effective Elastic Modulus of Plain Weave Multi-phase and Multi-layer Silicon Carbide Ceramic Matrix Composite. Materials Science and Technology, 2008, 24(4): 435-442. [80] H.B. Wang, W.H. Zhang, Y.J. Xu, Q.F. Zeng. Numerical computing and experimental validation of effective elastic properties of 2D multilayered C/SiC composite. Materials Science and Technology, 2008, 24(11): 1385-1398. [81] T. Gao, W.H. Zhang, J.H. Zhu, Y.J. Xu, D.H. Bassir. Topology optimization of heat conduction problem involving design-dependent heat load effect. Finite Elements in Analysis and Design, 2008, 44(14): 805-813.
社会兼职 Social Appointments 中国航空学会青年工作委员会委员,中国复合材料学会轨道交通专业委员会委员陕西省航空学会理事,陕西省力学学会理事《航空学报》、《Chinese Journal of Aeronautics》、《航空知识》青年编委《材料工程》、《航空材料学报》青年编委《Chinese Journal of Aeronautics》专刊“Modeling and Simulation in Design and Manufacture of Advanced Composite Structures”执行主编陕西省空天结构技术重点实验室副主任陕西省飞行器结构设计与应用工程实验室副主任 第十二届亚澳复合材料科技大会(12th ACCM, 2022, 中国)“Automated Manufacturing”分会主席第十四届世界计算力学大会(14th WCCM, 2020, 法国)“Computational Mechanics in Manufacturing of Composite Structure”分会主席第十五届美国计算力学大会(15th USNCCM, 2019, 美国)“Process-Induced Deformation and Defects Control Method for Composite Structure”分会主席第十三届世界计算力学大会(13th WCCM, 2018, 美国)“Computational Mechanics in Manufacturing of Composite Structure”分会主席第十八届美国应用力学大会(18th USNCTAM, 2018, 美国)“Mechanics for Manufacturing of Composite Structure”分会主席第四届中国国际复合材料科技大会(CCCM-4, 2019, 中国)“复合材料残余应力与翘曲变形”分会主席第三届中国国际复合材料科技大会(CCCM-3, 2017, 中国)“复合材料残余应力与翘曲变形”分会主席中国青年科学家论坛第311次会议“无人机颠覆性技术”执行主席中国青年科学家论坛第365次会议“先进直升机关键材料与制造技术”执行主席