发布日期:2024-05-03 浏览次数:次
更新日期:2024年3月15日 姓 名 肖晃庆 性 别 男 出生年月 籍贯 广东河源 民 族 汉族 政治面貌 中国共产党党员 最后学历 博士研究生毕业 最后学位 工学博士 技术职称 副教授 导师类别 硕导 行政职务 Email xiaohq@scut.edu.cn 工作单位 电力学院 邮政编码 510641 通讯地址 广州市天河区五山路381号 单位电话 工作经历 2021-至今,华南理工大学,副教授,硕士生导师2018-2020,美国田纳西大学,Research Associate 教育经历 2013-2018,浙江大学,博士(浙江省优秀博士学位论文提名论文、浙江省优秀毕业生)2009-2013,浙江大学,学士(浙江省优秀毕业生、竺可桢荣誉证书) 获奖、荣誉称号 Outstanding Reviewer for IEEE Transactions on Power Delivery 广东省普通高校青年创新人才Excellent Peer Reviewer Award for CSEE JPES《浙江电力》2023年度优秀审稿专家浙江省优秀博士学位论文提名论文浙江省优秀毕业生 社会、学会及学术兼职 IEEE PES直流系统规划与设计技术分委会常务理事中国电机工程学会电力系统建模与仿真学术工作组委员IEEE "Ultra-wide-area HVDC Overlay Studies" 工作组委员国际学术期刊《Frontiers in Energy Research》特邀副主编国际学术期刊《Energies》编委、特邀副主编《Clean Energy Science and Technology》青年编委《浙江电力》青年编委《电力建设》青年编委第五届能源、电气和电力工程国际会议(CEEPE 2022)分会场主席第二届国际动力工程会议(ICPE 2021)分会场主席 研究领域 直流输电新能源并网技术电力系统稳定分析与控制 科研项目 作为负责人,主持各类纵向项目5项作为主要完成人,参与国家重点研发计划、国家863项目、美国国家科学基金、美国能源局项目、国家电网公司科技项目、南方电网公司科技项目等课题 发表论文 发表科技论文60余篇,包含高水平SCI论文20余篇。部分论文如下:[1] Huangqing Xiao, Huichen Gan, Yuqing Dong, et. al., "Control and Capacity Design of Station-Hybrid HVDC System with DRU and MMC in Parallel for Offshore Wind Power Integration," IEEE Transactions on Power Delivery, doi: 10.1109/TPWRD.2024.3376436.[2] Huangqing Xiao, Huichen Gan, Ping Yang, et. al., "Robust Submodule Fault Management in Modular Multilevel Converters with Nearest Level Modulation for Uninterrupted Power Transmission," IEEE Transactions on Power Delivery, doi: 10.1109/TPWRD.2023.3343693.[3] Huangqing Xiao, Huichen Gan, Ying Huang and Zexiang Cai, "Capacitor Voltage Ripple Control Strategy of Lightweight Modular Multilevel Converter for Offshore Wind Power Transmission," IEEE Transactions on Industry Applications, Early Access.[4] Huangqing Xiao, Hongliang He, Lidong Zhang and Teng Liu, "Adaptive Grid-Synchronization Based Grid-Forming Control for Voltage Source Converters," IEEE Transactions on Power Systems, vol. 39, no. 2, pp. 4763-4766, March 2024.[5] Huangqing Xiao, Xiaowei Huang, Ying Huang, and Yilu Liu, "Self-Synchronizing Control and Frequency Response of Offshore Wind Farms Connected to Diode Rectifier Based HVDC System," IEEE Transactions on Sustainable Energy, vol. 13, no. 3, pp. 1681-1692, 2022.[6] Huangqing Xiao, Zheng Xu, Liang Xiao, Chun Gan, Feng Xu and Leisi Dai, “Components Sharing Based Integrated HVDC Circuit Breaker for Meshed HVDC Grids,” IEEE Transactions on Power Delivery, vol. 35, no. 4, pp. 1856-1866, Aug. 2020.[7] Huangqing Xiao, Kaiqi Sun, Jiuping Pan, Yujun Li and Yilu Liu, “Review of Hybrid HVDC Systems Combining Line Communicated Converter and Voltage Source Converter,” International Journal of Electrical Power & Energy Systems, vol. 129, 106713, Jul. 2021. [8] Bicheng Liu, Huangqing Xiao*, Zexiang Cai, and Yinguo Yang, "Study on Frequency Characteristics of Receiving Power System with Large-Scale Offshore Wind Power Generation," Energy Reports, vol. 9, pp. 596-607, 2023.[9] Kaiqi Sun, Huangqing Xiao*, Jiuping Pan and Yilu Liu, "VSC-HVDC Interties for Urban Power Grid Enhancement," IEEE Transactions on Power Systems, vol. 36, no. 5, pp. 4745-4753, Sep 2021. [10] Kaiqi Sun, Huangqing Xiao*, Jiuping Pan and Yilu Liu, "A Station-hybrid HVDC System Structure and Control Strategies for Cross-seam Power Transmission," IEEE Transactions on Power Systems, vol. 36, no. 1, pp. 379-388, Jan. 2021. [11] Huangqing Xiao, Xiaowei Huang, Feng Xu, Leisi Dai, Yongjun Zhang, Zexiang Cai and Yilu Liu, "Improved multiline HVDC circuit breakers with asymmetric conducting branches," International Journal of Electrical Power & Energy Systems, vol. 137, 107882, May 2022.[12] Huangqing Xiao, Bicheng Liu, Xiaowei Huang, Zexiang Cai, and Yongjun Zhang, "Topology and control of a novel hybrid HVDC circuit breaker with self-powered capability," Energy Reports, vol. 8, pp. 1165-1173, 2022. [13] Hongliang He, Huangqing Xiao, Ping Yang, "Analysis and quantitative evaluation of wind turbine frequency support capabilities in power systems," Frontiers in Energy Research, vol. 12: 1363198, 2024.[14] Huangqing Xiao, Bicheng Liu, Xiaowei Huang and Zexiang Cai, "Synchronous Generator Imitation Control and Dynamic Power Sharing for Distributed Power Generation Systems," Frontiers in Energy Research, vol. 10, 2022.[15] Huangqing Xiao, Kaiqi Sun, Jiuping Pan, Liang Xiao, Chun Gan and Yilu Liu, “Coordinated Frequency Regulation among Asynchronous AC Grids with an MTDC System,” International Journal of Electrical Power & Energy Systems, vol. 126, 106604, Mar. 2021.[16] Kaiqi Sun, Huangqing Xiao*, Shutang You, Hongyu Li, Jiuping Pan, Ke-Jun Li and Yilu Liu. "Frequency Secure Control Strategy for Power Grid with Large-scale Wind Farms through HVDC links," International Journal of Electrical Power & Energy Systems, vol. 117, 105706, May 2020. [17] Liang Xiao, Zheng Xu, Huangqing Xiao*, Zheren Zhang, Guoteng Wang, and Yuzhe Xu, "Electro-mechanical transient modeling of MMC based multi-terminal HVDC system with DC faults considered," International Journal of Electrical Power & Energy Systems, vol. 113, pp. 1002-1013, Dec. 2019. [18] Yuzhe Xu, Zheng Xu, Zheren Zhang, and Huangqing Xiao*, "A Novel Circulating Current Controller for MMC Capacitor Voltage Fluctuation Suppression," IEEE Access, vol. 7, pp. 120141-120151, 2019. [19] Huangqing Xiao, Kaiqi Sun, Jiuping Pan and Yilu Liu, “Operation and Control of Hybrid HVDC System with LCC and Full-Bridge MMC Connected in Parallel,” IET Generation, Transmission & Distribution, vol. 14, no. 7, pp. 1344-1352, 2020.[20] Huangqing Xiao, Zheng Xu, Geng Tang and Yinglin Xue, “Complete mathematical model derivation for modular multilevel converter based on successive approximation approach,” IET Power Electronics, vol. 8, no. 12, pp. 2396-2410, Dec. 2015. [21] Huangqing Xiao, Zheng Xu, Yinglin Xue and Geng Tang, “Theoretical Analysis of the Harmonic Characteristics of Modular Multilevel Converters,” Science China (Technological Sciences), vol.56, no.11, pp.2762-2770, Nov. 2013. [22] Huangqing Xiao, Zheng Xu, Zheren Zhang, etc., “Start-Up and Shut-Down Control Strategies for MMC-Based Multi-Terminal HVDC Systems,” Journal of Energy Engineering, vol. 142, no. 3, 04015043, Sep. 2016.[23] Kaiqi Sun, Huangqing Xiao* and Yilu Liu, "Optimized allocation method of the VSC-MTDC system for frequency regulation reserves considering ancillary service cost," CSEE Journal of Power and Energy Systems, vol. 8, no. 1, pp. 53-63, Jan. 2022.[24] Kaiqi Sun, Huangqing Xiao*, Jiuping Pan and Yilu Liu, "Cross-seam Hybrid MTDC System for Integration and Delivery of Large-scale Renewable Energy," Journal of Modern Power Systems and Clean Energy, vol. 9, no. 6, pp. 1352-1362, 2021.[25] Yingjie Tang, Zheng Xu, Huangqing Xiao*, Bo Yue, Xuan Li, "Study on Commutation Overshoots Based on a Novel Model for Series Thyristors During the Turn-off Process," High Voltage, vol. 5, no. 5, pp. 501-510, Oct. 2020. [26] Kaiqi Sun, Huangqing Xiao*, Lakshmi Sundaresh, Kejun Li and Yilu Liu, "Frequency Response Reserves Sharing Across Asynchronous Grids through MTDC System," IET Generation, Transmission & Distribution, vol. 13, no. 21, pp. 4952-4959, Nov. 2019. [27] Yingjie Tang, Zheng Xu, Huangqing Xiao*, Bo Yue, "Determination of Operating Conditions of LCC for PCOV Calculation Based on Detailed Analysis of Commutation Overshoot," IET Generation, Transmission & Distribution, vol. 14, no. 8, pp. 1566-1574, 2020.[28] Yang Jian, Pengcheng Song, Zheng Xu, Huangqing Xiao*, Hui Cai and Zhenjian Xie. "Small-signal model of vector current-controlled MMC-UPFC," IET Generation, Transmission & Distribution, vol. 13, no. 18: pp. 4180-4189, 2019. [29] Kaiqi Sun, Huangqing Xiao*, Shengyuan Liu and Yilu Liu, "Machine Learning-based Fast Frequency Response Control for a VSC-HVDC System," CSEE Journal of Power and Energy Systems, vol. 7, no. 4, Jul. 2021.[30] Facai Xing, Zheng Xu, Huangqing Xiao* and Zheren Zhang, " Analysis on Response Characteristics of Two‑Level VSC to Disturbances and Its Oscillation Suppression Strategy," Journal of Electrical Engineering & Technology, vol. 16, pp. 1389–1401, 2021.[31] Zheng Xu, Huangqing Xiao and Zheren Zhang, “Selection methods of main circuit parameters for modular multilevel converters,” IET Renewable Power Generation, vol. 10, no. 6, pp. 788-797, Jul. 2016.[32] Zheng Xu, Shijia Wang and Huangqing Xiao, “Hybrid high-voltage direct current topology with line commutated converter and modular multilevel converter in series connection suitable for bulk power overhead line transmission,” IET Power Electronics, vol. 9, no. 12, pp. 2307-2317, Oct. 2016.[33] Zheng Xu, Yuzhe Xu, Huangqing Xiao, Zheren Zhang and Gaoren Liu, "Feasibility study of DC circuit breaker-less MTDC systems," International Transactions on Electrical Energy Systems, vol. 29, no. 1, 2019.[34] Yujun Li, Jiapeng Li, Huangqing Xiao, Jianlian Zhang and Zhengchun Du, "Stability Analysis of Droop-Based Converter Using SISO Method from DC Side Perturbation," IEEE Transactions on Power Delivery, vol. 36, no. 5, pp. 3150-3161, Oct. 2021.[35] Yujun Li, Xiaotian, Yuan, Jiapeng Li, Huangqing Xiao, Zhao Xu and Zhengchun Du, "Novel Grid-forming Control of PMSG based Wind Turbine for Integrating Weak AC Grid without sacrificing MPPT," IET Generation, Transmission & Distribution, vol. 15, no. 10, pp. 1613-1625, May 2021.[36] 肖晃庆,黄小威,李岩,等. 适用于二极管不控整流送出的海上风电机组无功功率同步控制策略[J]. 高电压技术, 2022, 48(10): 3820-3828.[37] 肖晃庆, 徐政, 刘高任, 张哲任. 新型高压直流断路器的自供能控制策略[J]. 电力自动化设备, 2019, 39(01): 1-9.[38] 肖晃庆, 徐政, 薛英林, 等. 模块化多电平换流器谐波特性解析分析[J]. 中国科学:技术科学, 2013, 43(11): 1272-1280.[39] 肖晃庆, 徐政, 薛英林, 等. 多端柔性直流输电系统的启动控制策略[J]. 高电压技术, 2014, 40(08): 2550-2557.[40] 甘慧辰,肖晃庆,黄莹. 用于海上风电的DRU-MMC混合换流器控制策略和容量选取 [J]. 电力系统自动化, 1-13. http://kns.cnki.net/kcms/detail/32.1180.TP.20231009.0743.002.html.[41] 朱琼海, 肖晃庆. 基于模块化多电平换流器的超级电容储能系统高效仿真方法 [J]. 电力自动化设备, 1-11. https://doi.org/10.16081/j.epae.202312006.[42] 徐政, 肖晃庆, 徐雨哲. 直流断路器的基本原理和实现方法研究[J]. 高电压技术, 2018, 44(02): 347-357.[43] 徐政, 肖晃庆, 张哲任. 模块化多电平换流器主回路参数设计[J]. 高电压技术, 2015, 41(08): 2514-2527.[44] 林建熙,刘必成,肖晃庆,樊玮,刘宇. 大规模海上风电接入的受端电网频率特性[J]. 广东电力, 2023, 36(03): 23-31.[45] 黄莹,黄小威,肖晃庆,等. 基于二极管整流单元的海上风电柔性低频送出系统黑启动策略 [J/OL]. 高电压技术, 1-11. https://doi.org/10.13336/j.1003-6520.hve.20231246.[46] 刘正富, 杨汾艳, 肖晃庆, 徐政, 刘高任. 基于双队列的模块化多电平换流器子模块调制方法[J]. 电力系统自动化, 2018, 42(02): 77-83.[47] 徐政, 李宁璨, 肖晃庆, 董桓锋, 陆韶琦, 郭相阳.大规模交直流电力系统并行计算数字仿真综述[J]. 电力建设, 2016, 37(02): 1-9.[48] 刘正富, 盛超, 肖晃庆, 徐政. 多回MMC-HVDC馈入极弱交流系统的控制策略[J]. 南方电网技术, 2018, 12(02): 56-63.[49] 徐政, 王世佳, 李宁璨, 肖晃庆, 江伟. 适用于远距离大容量架空线路的LCC-MMC串联混合型直流输电系统[J]. 电网技术, 2016, 40(01): 55-63.[50] 徐政, 王世佳, 邢法财, 肖晃庆. 电力网络的谐振稳定性分析方法研究[J]. 电力建设, 2017, 38(11): 1-8.[51] 陆翌, 李继红, 裘鹏, 肖晃庆, 刘高任, 徐政. 混合直流输电系统直流故障处理策略比较分析[J].电力建设, 2017, 38(08): 33-41.[52] 陆羿, 李继红, 裘鹏, 徐雨哲, 肖晃庆, 徐政. 基于电容电压波动的模块化多电平换流器电容电压均衡策略[J]. 电力系统保护与控制, 2018, 46(24): 158-164.[53] 徐政, 王世佳, 张哲任, 徐雨哲, 肖晃庆. LCC-MMC混合级联型直流输电系统受端接线和控制方式[J]. 电力建设, 2018, 39(07): 115-122.[54] 董桓锋, 唐庚, 侯俊贤, 王铁柱, 肖亮, 肖晃庆, 徐政.海上风电接入多端柔性直流输电系统中换流站退出运行时直流功率再分配策略[J]. 电网技术, 2017, 41(05): 1398-1406.[55] 张勇军,羿应棋,李立浧,钟康骅,李钦豪,刘斯亮,肖晃庆. 双碳目标驱动的新型低压配电系统技术展望[J]. 电力系统自动化, 2022, 46(22): 1-12.[56] Huangqing Xiao, et al. "Data-Driven Security Assessment of Power Grids Based on Machine Learning Approach," 2019 Grid of the Future Symposium, Atlanta, GA, 2019.[57] Huangqing Xiao, Zheng Xu, Shijia Wang, Sheng Liu and Wei Jiang, “Control Strategy for Multi-infeed MMC-based HVDC System Connected to Weak Grid,” 2017 IEEE Power & Energy Society General Meeting (PESGM), Chicago, ILL, 2017.[58] Yi Lu, Jihong Li, Peng Qiu, Huangqing Xiao, Gaoren Liu and Zheng Xu, “Comparison of DC Fault Handling Strategies for Hybrid HVDC system,” IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, 2017.[59] Yuzhe Xu, Huangqing Xiao, Zheng Xu, et al., "Capacitor Voltage Balancing Algorithm Using Voltage Fluctuation Threshold for Modular Multilevel Converters," 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Denver, CO, USA, 2018.[60] Gaoren Liu, Yuzhi Zhou, Huangqing Xiao and Zheng Xu, "Optimized modulation method for the modular multilevel converter with redundant sub-modules under arm-asymmetric operating conditions," 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 2016.[61] Shutang You, Weikang Wang, …, Huangqing Xiao, et al, “Build Smart Grids on Big Data and Artificial Intelligence – a Real-world Example,” European Conference on Artificial Intelligence (ECAI) 2020, Santiago de Compostela, 2020. (获Excellent paper award)[62] Xiaowei Huang, Huangqing Xiao, Ying Huang, et al., "Black Start Strategy of DRU-Based Low-Frequency AC Transmission System for Offshore Wind Power Integration," 2023 IEEE Industry Applications Society Annual Meeting (IAS), Nashville, TN, USA, 2023. 出版专著和教材 [1] 徐政, 肖晃庆, 张哲任, 等. 柔性直流输电系统[M]. 2版. 北京: 机械工业出版社, 2017.[2] 张勇军, 刘子文, 肖晃庆. 高压直流输电原理与应用[M]. 2版. 北京: 清华大学出版社, 2022.[3] You Shutang; Li Hongyu; Liu Shengyuan; Sun Kaiqi; Zhao Yinfeng; Xiao Huangqing; Dong Jiaojiao; Su Yu; Wang Weikang; Cui Yi; Yin He; Tan Jin; Liu Yilu, "Build Smart Grids on Artificial Intelligence − A Real-world Example," in Applications of Big Data and Artificial Intelligence in Smart Energy Systems Smart Energy System: Design and its State-of-The Art Technologies : Volume 1 , River Publishers, 2023, pp.193-220. 科研创新 [1] LCC and MMC Series-Connected HVDC System with DC Fault Ride-Through Capability. 美国专利号:US10084387 B2. [2] DC Voltage Drop Control Method with Dead-Band for HVDC Grids based on DC Voltage Fiducial node. 美国专利号:US10277032 B2. [3] Station-hybrid high voltage direct current system and method for power transmission. 美国专利号:US20220140607A1.[4] Methods, systems, and computer program products for adaptive wide-area damping control using a transfer function model derived from measurements. 美国专利号:US20220140648A1.[5] Grid-forming control method for offshore wind turbine. 美国专利号:US20230361570A1.[6] 一种基于复频域下节点导纳矩阵的电网络固有谐振结构分析方法. 专利号:ZL 2017 1 0834960.1.[7] 一种降低MMC子模块电容电压波动率的控制方法. 专利号:ZL 2017 1 1294949.7.[8] 一种多回MMC-HVDC馈入极弱电网的控制策略. 专利号:ZL 2017 1 0050949.6.[9] 一种混合式高压直流断路器的稳态补能控制策略. 专利号:ZL 2017 1 0834016.6.[10] 一种混合式高压直流断路器的启动控制策略. 专利号:ZL 2017 1 0833335.5.[11] 一种考虑多种闭锁模态的基于箝位双子模块MMC的等效仿真方法. 专利号:ZL 2015 1 0528773.1.[12] 一种MMC桥臂电抗器电感值的选取方法. 专利号:ZL 2015 1 0454500.7.[13] 一种MMC的谐波特性解析方法. 专利号:ZL 2013 1 0325777.0. 教学活动 本科生课程:直流输电、Power System Analysis I、电力系统分析(上)、电力系统稳定性、柔性直流输电研究生课程:高压直流输电原理与应用、现代直流输电技术 我的团队 高压直流输电及保护控制技术团队,欢迎你的加入!