发布日期:2024-05-03 浏览次数:次
更新日期:2024年1月15日 姓 名 张闰 性 别 男 出生年月 籍贯 广东湛江 民 族 政治面貌 最后学历 博士研究生 最后学位 工学博士 技术职称 副教授 导师类别 硕导 行政职务 Email zhangrun@scut.edu.cn 工作单位 邮政编码 通讯地址 单位电话 个人简介 张闰,现为华南理工大学土木与交通学院工程力学系副教授,硕士生导师。研究领域为数值方法及在计算力学中的应用、非线性力学、冲击动力学。研究兴趣包括多尺度下结构非线性模型、非线性动力算法、结构及材料的损伤破坏、弱形式求积元法研究。张闰博士于2010年及2015年分别获清华大学土木工程系学士及博士学位。2016年9月至今在华南理工大学土木与交通学院从事教学及科研工作。2019年8月至2020年9月以访问学者身份在Rice University开展合作研究。作为项目负责人主持国家自然科学基金面上项目、青年基金项目等多项国家级及省部级课题,以第一作者及通讯作者身份发表高水平学术论文二十余篇。Google Scholar:https://scholar.google.com/citations?user=Vc7VgtwAAAAJ&hl=zh-CN 科研项目 【1】国家自然科学基金面上项目,基于弱形式求积元法的微纳结构力电耦合非线性分析方法,61万元,在研,主持;【2】国家自然科学基金青年基金项目, 基于弱形式求积元法的加筋壳结构非线性屈曲分析方法,32万元,已结题,主持;【3】中央高校基本科研业务费,基于求积元法的层状压电结构守恒动力算法及俘能应用,10万元,已结题,主持;【4】广州市科技计划项目-基础与应用基础研究项目,基于求积元法的纳米结构非线性动力分析方法,5万元,在研,主持;【5】中国博士后科学基金面上项目,基于弱形式求积元法的复合材料壳非线性屈曲分析方法,5万元,已结题,主持;【6】中央高校基本科研业务费,基于弱形式求积元法的复合材料加筋壳屈曲研究,5万元,已结题,主持 发表论文 Cheng J, Zhang R*, Chen T, Yao X, Liu Q. A numerical scheme for geometrically exact flexoelectric microbeams using the weak form quadrature element method. Acta Mechanica, 2023, https://doi.org/10.1007/s00707-023-03787-w.Zhang R*, Chen T, Cheng J, Yao X. A weak form quadrature element formulation of geometrically exact strain gradient shells. International Journal of Non-linear Mechanics, 2023, 154: 104427.Kong W, Yang S, Wang S, Liu Z, Zhang R*, Zhong W*, Yao X. On dynamic response and damage evaluation of bridge piers under far-field explosion loads. Structures, 2023, 51: 985-1003.Zhang R*, Cheng J, Chen T, Zhong H. A weak form quadrature element formulation of geometrically exact beams with strain gradient elasticity. European Journal of Mechanics - A/Solids, 2023, 99:104912Huang G, Zhang X, Xie Z, Jian W,Zhang R*, Yao X*. Effects of lattice distortion and chemical short-range order on creep behavior of medium-entropy alloy CoCrNi. Mechanics of Materials, 2022, 177(6):104549Yang S, Tang Z, Zhong W*, Wang S, Zhang R*, Yao X*. Effects of steel fibers on the dynamic properties and failure process of ultra-high performance concrete. Journal of Building Engineering, 2022, 62(15): 105415Yang S, Zhong W*, Wang S, Kong W, Tang Z, Tian Z, Zhang R*, Yao X*. On dynamic analysis and damage evaluation for bridge girders under high-energy air burst. Structures, 2022, 41: 1488-1500Tang Z, Yang S*, Zhang R*, Yao X*. An RHT-model-based equivalent parameter scheme for blast response simulation of RC frames. International Journal of Structural Stability and Dynamics, 2022, 22: 2250010Zhang R*, Stanciulescu I, Yao X, Zhong H. An energy–momentum conserving scheme for geometrically exact shells with drilling DOFs. Computational Mechanics, 2021,67:341-364Zhang R, Zhong H*, Yao X, Han Q. A quadrature element formulation of geometrically nonlinear laminated composite shells incorporating thickness stretch and drilling rotation. Acta Mechanica, 2020, 231:1685-1709.Zhang R, Zhong H*, Yao X. A weak form quadrature element formulation of geometrically exact shells incorporating drilling degrees of freedom. Computational Mechanics 2019, 63: 663-679.Zhang R, Zhong H*. A weak form quadrature element formulation for geometrically exact thin shell analysis. Computers and Structures 2018, 202: 44-59.Ou X, Yao X*, Zhang R*, Zhang X, Han Q. Nonlinear dynamic response analysis of cylindrical composite stiffened laminates based on the weak form quadrature element method. Composite Structures 2018, 203: 446-457.Ou X, Zhang X*, Zhang R*, Yao X, Han Q. Weak form quadrature element analysis on nonlinear bifurcation and post-buckling of cylindrical composite laminates. Composite Structures 2018, 188: 266-277.Zhang R, Zhong H*. A quadrature element formulation of an energy-momentum conserving algorithm for dynamic analysis of geometrically exact beams. Computers and Structures 2016, 156: 96-106.Zhang R, Zhong H*. Weak form quadrature element analysis of geometrically exact shells. International Journal of Non-Linear Mechanics 2015, 71: 63–71.Zhang R, Zhong H*. Weak form quadrature element analysis of spatial geometrically exact shear-rigid beams. Finite Elements in Analysis and Design 2014, 87: 22-31.Zhong H*, Zhang R, Xiao N. A quaternion-based weak form quadrature element formulation for spatial geometrically exact beams. Archive of Applied Mechanics 2014, 84: 1825-1840.Zhang R, Zhong H*. Weak form quadrature element analysis of planar slender beams based on geometrically exact beam theory. Archive of Applied Mechanics 2013, 83: 1309-1325.Zhong H*, Zhang R, Yu H. Buckling analysis of planar frameworks using the quadrature element method. International Journal of Structural Stability and Dynamics 2011, 11: 363-378.