哈尔滨工业大学

张国强

发布日期:2024-05-10 浏览次数:

基本信息 科学研究 论文著作 新建主栏目 基本信息 名称 张国强,教授,博士生导师,IEEE Senior Member,黑龙江省优青,入选国家“博士后创新人才支持计划” 和黑龙江省“博士后青年英才计划”。从事永磁同步电机/同步磁阻电机驱动控制技术、无位置传感器控制、效率优化控制、无电解电容驱动系统等科研工作,出版英文专著3部(Springer出版社,主编1部,参编2部),发表SCI/EI论文100余篇(其中SCI论文50余篇),授权发明专利20余件。主持(参加)国家自然科学基金(面上/青年)、黑龙江省博士后基金特别资助、台达电力电子科教发展计划(青年)、企业科技合作项目等研究工作。获省部级科技奖励5项(黑龙江省自然科学一等奖、黑龙江省技术发明一等奖、教育部技术发明二等奖、中国电工技术学会青年科技奖、中国电源学会科技进步二等奖)、IEEE TTE年度优秀论文二等奖、中国科协优秀科技论文、F5000中国精品科技期刊顶尖学术论文、IEEE IES EMTC年度优秀论文、ICEMS国际会议优秀论文 (2019, 2022, 2023)、《电气工程学报》年度优秀论文、中国电源学会学术年会优秀论文等。担任黑龙江省可持续能源变换与控制技术重点实验室副主任、Journal of Power Electronics (SCI期刊) 编委 (Associate Editor)、中国电源学会青年工作委员会副主任委员、中国电工技术学会青年工作委员会委员、中国电工技术学会电控系统与装置专业委员会委员、中国自动化学会电气自动化专业委员会委员、PCIM Asia Conference技术委员会委员、IEEE Transactions和IET多个期刊审稿人。 工作经历 名称 时间 工作经历 2022.12-今 哈尔滨工业大学,电气工程及自动化学院,教授 2020.07-今 哈尔滨工业大学,电气工程及自动化学院,博导 2019.12-2022.12 哈尔滨工业大学,电气工程及自动化学院,副教授(青年拔尖人才选聘计划) 2018.05-今 哈尔滨工业大学,电气工程及自动化学院,硕导 2017.07-2019.12 哈尔滨工业大学,电气工程及自动化学院,讲师/博士后 教育经历 名称 时间 教育经历 2013.09 - 2017.07 哈尔滨工业大学, 电气工程学科, 博士(导师:徐殿国) 2011.09 - 2013.07 哈尔滨工业大学, 电气工程学科, 硕士(导师:王高林) 2007.09 - 2011.06 哈尔滨工程大学, 电气工程学科, 学士 荣誉奖励 名称 黑龙江省自然科学一等奖(排序3/5) 黑龙江省技术发明一等奖(排序4/11) 教育部技术发明二等奖(排序3/6) 中国电工技术学会青年科技奖 中国电源学会科技进步二等奖(排序1/5) 黑龙江“省优青” 全国“博士后创新人才支持计划”(全国300人,电气工程仅4人,2017年) 黑龙江省“博士后青年英才计划”(2017年) IEEE TTE 年度优秀论文二等奖(2022年) 中国科协优秀科技论文 (2020年) F5000中国精品科技期刊顶尖学术论文 (2019年) IEEE IES EMTC年度优秀论文 (2022年) ICEMS (2019, 2022, 2023) Best Paper Award 《电气工程学报》2017~2018年度优秀论文 中国电源学会年会优秀论文奖 (2017年) 主要任职 名称 黑龙江省可持续能源变换与控制技术重点实验室副主任 Journal of Power Electronics (SCI 期刊) 编委 中国电源学会青年工作委员会副主任委员 中国电工技术学会青年工作委员会委员 中国电工技术学会电控系统与装置专业委员会委员 中国自动化学会电气自动化专业委员会委员 PCIM Asia Conference技术委员会委员 ICEMS 2019 Special Session Chair ICEMS 2021 Special Session Chair ICEMS 2022 Special Session Co-Chair IEEE Senior member IEEE PELS member IEEE IES member IEEE Trans. 期刊审稿人 电工技术学会高级会员 电源学会会员 《中国电机工程学报》审稿人 《电工技术学报》审稿人 研究团队&方向 名称 研究团队 电气学院电力电子与电力传动研究所——永磁电机驱动控制实验室,依托111引智基地(国际先进电驱动技术创新引智基地)、校企联合研究中心(哈工大-美的、哈工大-台达、哈工大-新时达、哈工大-英威腾)等,面向国家重大需求和国民经济主战场,开展永磁电机驱动控制等研究已有十余年,形成了以无位置传感器控制、无电解电容器控制、无称重传感器控制等为特长的研究队伍: 徐殿国 教授、博士生导师、IEEE Fellow,负责人 王高林 教授、博士生导师、国家杰青/优青,负责人 张国强 教授、博士生导师、博新计划,成员 团队获黑龙江省自然科学一等奖、技术发明一等奖和教育部技术发明二等奖等省部级科技奖励三项 研究方向 交流电机驱动技术 永磁电机无传感器控制技术 永磁直驱式电梯控制技术 电机高效再制造能效提升技术 电机参数辨识技术 无电解电容器电机驱动系统 宽禁带半导体电机驱动技术 实验平台 科研项目 项目名称 高适应性无传感器同步磁阻电机系统多时间尺度表征与多性能协同控制研究 项目来源 国家自然科学基金面上项目 开始时间 2022.01 结束时间 2025.12 项目经费 担任角色 负责 项目类别 纵向项目 项目状态 进行中 简单介绍 项目名称 同步磁阻电机无传感器多信号随机注入降噪与效率优化控制方法研究 项目来源 国家自然科学基金青年项目 开始时间 2019.01 结束时间 2021.12 项目经费 担任角色 负责 项目类别 纵向项目 项目状态 完成 简单介绍 项目名称 同步磁阻电机无传感器驱动控制系统关键技术研究 项目来源 台达电力电子科教发展计划青年项目 开始时间 2019.07 结束时间 2020.12 项目经费 担任角色 负责 项目类别 横向项目 项目状态 完成 简单介绍 项目名称 基于SiC功率器件的电动车永磁电机驱动系统无位置传感器控制 项目来源 中国博士后创新人才支持计划 开始时间 2017.07 结束时间 2019.06 项目经费 担任角色 参与 项目类别 纵向项目 项目状态 完成 简单介绍 项目名称 永磁电机高动态性能无传感器先进控制策略研究 项目来源 黑龙江省博士后特别资助 开始时间 2017.12 结束时间 2019.11 项目经费 担任角色 负责 项目类别 纵向项目 项目状态 完成 简单介绍 项目名称 伺服驱动及电机测试规范、标准研究与测试平台 项目来源 国家科技重大专项 开始时间 2012.01 结束时间 2016.12 项目经费 担任角色 参与 项目类别 纵向项目 项目状态 完成 简单介绍 项目名称 大功率港口起重专用变频器的关键技术开发与应用 项目来源 国家科技支撑计划项目 开始时间 2014.01 结束时间 2016.12 项目经费 担任角色 参与 项目类别 纵向项目 项目状态 完成 简单介绍 专著 出版物名称 Permanent Magnet Synchronous Motor Drives for Gearless Traction Elevators 作者 Guoqiang Zhang, Gaolin Wang, Nannan Zhao, Dianguo Xu 出版时间 2021年12月 出版社 Springer 简单介绍 This book focuses on the permanent magnet synchronous motor (PMSM) drives for gearless traction elevators. Both basic principles and experimental evaluation have been addressed. This is achieved by providing in-depth study on a number of major topics such as speed detection at low-speed operation, starting torque strategy based on dichotomy and staircase methods, fuzzy self-tuning method, MPC and ADRC. The comprehensive and systematic treatment of control strategies for cost-effective gearless PMSM traction elevators and practical issues are the major features of the book, which is particularly suited for readers who are interested to learn the control strategies for cost-effective gearlessPMSMtraction elevators. The book could benefit researchers, engineers and graduate students in fields of AC motor drives and control strategies for cost-effective gearless PMSM traction elevators, etc. 出版物名称 Position Sensorless Control Techniques for Permanent Magnet Synchronous Machine Drives 作者 Gaolin Wang, Guoqiang Zhang (张国强), and Dianguo Xu 出版时间 2020 出版社 Springer 简单介绍 The book focuses on position sensorless control for PMSM drives, addressing both basic principles and experimental evaluation. It provides an in-depth study on a number of major topics, such as model-based sensorless control, saliency-based sensorless control, position estimation error ripple elimination and acoustic noise reduction. Offering a comprehensive and systematic overview of position sensorless control and practical issues it is particularly suitable for readers interested in the sensorless control techniques for PMSM drives. The book is also a valuable resource for researchers, engineers, and graduate students in fields of ac motor drives and sensorless control. 出版物名称 Reduced DC-link Capacitance AC Motor Drives 作者 Gaolin Wang, Nannan Zhao, Guoqiang Zhang (张国强), and Dianguo Xu 出版时间 2021 出版社 Springer 简单介绍 This book focuses on the advanced control of reduced dc-link capacitance AC motor drives. Compared with the conventional AC motor drives, the reduced DC-link capacitance motor drives could reduce the cost, enhance the reliability and improve the power density. The control strategies proposed in this book are verified by experimental results, which include high power factor control, drive system stability control, beat phenomenon suppression, enhanced flux-weakening control, anti-overvoltage control, etc. The major features of this book are the systematic analysis, effective and optimized control of the practical issues in industry application, which could help readers to learn the reduced dc-link capacitance PMSM drives and promote the drive system application. This book could benefit researchers, engineers, and students in the field of AC motor drives. 期刊论文 名称 Paper In Press [1] S. Liu, Q. Wang, G. Wang, B. Li, D. Ding, G. Zhang, and D. Xu, “Virtual-Axis Injection Based Online Parameter Identification of PMSM Considering Cross Coupling and Saturation Effects,” IEEE Trans. Power Electron., pp. 1-11, 2023. [2] G. Bi, Q. Wang, D. Ding, B. Li, G. Zhang, G. Wang, and D. Xu, “Multi-Optimization Objective Online Tracking Based Parameter Self-Tuning Method for Sensorless PMSM Drives,” IEEE Trans. Transport. Electrific., pp. 1-1, 2022. [3] B. Li, D. Ding, Q. Wang, G. Zhang, B. Fu, G. Wang, and D. Xu, “Input Voltage Feedforward Active Damping Based Input Current Harmonic Suppression Method for Totem-pole Bridgeless PFC Converter,” IEEE J. Emerg. Sel. Topics Power Electron., pp. 1-1, 2022. [4] G. Zhang, H. Zhang, B. Li, Q. Wang, D. Ding, G. Wang, and D. Xu, “Auxiliary Model Compensated RESO-Based Proportional Resonant Thrust Ripple Suppression for PMLSM Drives,” IEEE Trans. Transport. Electrific., pp. 1-12, 2022. 2023 [1] Z. Zhang, B. Li, G. Zhang, G. Wang, Z. Huang, B. Hu, T. Long, and D. Xu, “Optimized carrier-based DPWM strategy adopting self-adjusted redundant clamping modes for Vienna rectifiers with unbalanced DC links,” IEEE Trans. Power Electron., vol. 38, no. 2, pp. 1622-1634, Feb. 2023. [2] S. Wang, G. Zhang, Q. Wang, D. Ding, G. Bi, B. Li, G. Wang, and D. Xu, “Torque Disturbance Compensation Method Based on Adaptive Fourier-Transform for Permanent Magnet Compressor Drives,” IEEE Trans. Power Electron., vol. 38, no. 3, pp. 3612-3623, Mar. 2023. [3] B. Li, D. Ding, QiweiWang, G. Zhang, G. Wang, and D. Xu, “Virtual Admittance Reshaping Based Input Current Phase Shift Suppression Method for Totem-Pole Bridgeless PFC Converter,” IEEE Trans. Power Electron., vol. 38, no. 3, pp. 2925-2939, Mar. 2023. [4] J. Huo, N. Zhao, R. Gao, G. Zhang, G. Wang, and D. Xu, “Analysis and compensation of position estimation error for sensorless reduced DC-link capacitance IPMSM drives,” IEEE Trans. Ind. Electron., vol. 70, no. 3, pp. 3213-3221, Mar. 2023. [5] G. Bi, G. Zhang, Qiwei Wang, D. Ding, B. Li, G. Wang, and D. Xu, “High-frequency injection angle self-adjustment based online position error suppression method for sensorless PMSM drives,” IEEE Trans. Power Electron., vol. 38, no. 2, pp. 1412-1417, Feb. 2023. [6] Y. Bai, B. Li, Q. Wang, D. Ding, G. Zhang, G. Wang, and D. Xu, “An adaptive-frequency harmonic suppression strategy based on vector reconstruction for current measurement error of PMSM drives,” IEEE Trans. Power Electron., vol. 38, no. 1, pp. 34-40, Jan. 2023. 2022 [1] L. Zhu, G. Zhang, R. Jing, G. Bi, R. Xiang, G. Wang, and D. Xu, “Nonlinear active disturbance rejection control strategy for permanent magnet synchronous motor drives,” IEEE Trans. Energy Convers., vol. 37, no. 3, pp. 2119-2129, Sep. 2022. [2] L. Zhu, F. Chen, B. Li, C. Li, G. Wang, S. Wang, G. Zhang, and D. Xu, “Phase current reconstruction error suppression method for single DC-link shunt PMSM drives at low-speed region,” IEEE Trans. Power Electron., vol. 37, no. 6, pp. 7067-7081, Jun. 2022. [3] Z. Zhang, G. Zhang, G. Wang, J. Wang, D. Ding, and D. Xu, “A hybrid modulation strategy with neutral point voltage balance capability for electrolytic capacitorless Vienna rectifiers,” IEEE Trans. Power Electron., vol. 37, no. 12, pp. 14294-14305, Dec. 2022. [4] G. Zhang, R. Xiang, G. Wang, C. Li, G. Bi, N. Zhao, and D. Xu, “Hybrid pseudorandom signal injection for position sensorless SynRM drives with acoustic noise reduction,” IEEE Trans. Transport. Electrific., vol. 8, no. 1, pp. 1313-1325, Mar. 2022. [5] Q. Wang, G. Wang, S. Liu, G. Zhang, and D. Xu, “An inverter-nonlinearity-immune offline inductance identification method for PMSM drives based on equivalent impedance model,” IEEE Trans. Power Electron., vol. 37, no. 6, pp. 7100-7112, Jun. 2022. [6] S. Liu, Q. Wang, G. Zhang, G. Wang, and D. Xu, “Online temperature identification strategy for position sensorless PMSM drives with position error adaptive compensation,” IEEE Trans. Power Electron., vol. 37, no. 7, pp. 8502-8512, Jul. 2022. [7] B. Li, G. Zhang, C. Li, G. Wang, S. Liu, and D. Xu, “Crosstalk suppression method for GaN-based bridge configuration using negative voltage self-recovery gate drive,” IEEE Trans. Power Electron., vol. 37, no. 4, pp. 4406-4418, Apr. 2022. [8] R. Jing, G. Zhang, G. Wang, G. Bi, D. Ding, and D. Xu, “An overmodulation strategy based on voltage vector space division for high-speed surface-mounted PMSM drives,” IEEE Trans. Power Electron., vol. 37, no. 12, pp. 15370-15381, Dec. 2022. [9] J. Huo, N. Zhao, G. Wang, G. Zhang, L. Zhu, and D. Xu, “An active damping control method for reduced DC-link capacitance PMSM drives with low line inductance,” IEEE Trans. Power Electron., vol. 37, no. 12, pp. 14328-14342, Dec. 2022. [10] J. Huo, N. Zhao, R. Gao, G. Wang, G. Zhang, and D. Xu, “Torque ripple compensation with anti-overvoltage for electrolytic capacitorless PMSM compressor drives,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 10, no. 5, pp. 6148-6159, Oct. 2022. [11] D. Ding, N. Zhao, G. Wang, G. Zhang, X. Zhang, N. Mijatovic, and D. Xu, “Suppression of beat phenomenon for electrolytic capacitorless motor drives accounting for sampling delay of DC-link voltage,” IEEE Trans. Ind. Electron., vol. 69, no. 2, pp. 1167-1176, Feb. 2022. [12] D. Ding, G. Zhang, G. Wang, Z. Ren, N. Mijatovic, T. Dragi?evi?, and D. Xu, “Impedance reshaping for inherent harmonics in PMSM drives with small DC-link capacitor,” IEEE Trans. Power Electron., vol. 37, no. 12, pp. 14265-14279, Dec. 2022. [13] G. Bi, G. Zhang, G. Wang, Q. Wang, Y. Hu, and D. Xu, “Adaptive iterative learning control-based rotor position harmonic error suppression method for sensorless PMSM drives,” IEEE Trans. Ind. Electron., vol. 69, no. 11, pp. 10870-10881, Nov. 2022. [14] G. Bi, D. Ding, G. Zhang, Qiwei Wang, R. Jing, Gaolin Wang, and D. Xu, “Adaptive quasi-proportional-resonant observer-based rotor position estimation for sensorless PMSM drives,” IEEE Trans. Power Electron., vol. 37, no. 12, pp. 15221-15233, Dec. 2022. [15] Y. Bai, G. Zhang, G. Wang, F. Chen, G. Bi, and D. Xu, “Position and speed detection method based on adaptive extended moving-window linear regression for traction machine drives,” IEEE Trans. Transport. Electrific., vol. 8, no. 2, pp. 2884-2897, Jun. 2022. [16] Y. Bai, G. Zhang, Qiwei Wang, Dawei Ding, B. Li, G. Wang, and D. Xu, “High-gain nonlinear active disturbance rejection control strategy for traction permanent magnet motor drives,” IEEE Trans. Power Electron., vol. 37, no. 11, pp. 13135-13146, Nov. 2022. 2021 [1] N. Zhao, R. Gao, G. Wang, D. Ding, G. Zhang, and D. Xu, “Online estimation method of DC-link capacitors for reduced DC-link capacitance IPMSM drives,” IEEE Trans. Power Electron., vol. 36, no. 11, pp. 12196-12201, Nov. 2021. [2] Q. Wang, N. Zhao, G. Wang, S. Zhao, Z. Chen, G. Zhang, and D. Xu, “An offline parameter self-learning method considering inverter nonlinearity with zero-axis voltage,” IEEE Trans. Power Electron., vol. 36, no. 12, pp. 14098-14109, Dec. 2021. [3] Q. Wang, G. Wang, N. Zhao, G. Zhang, Q. Cui, and D. Xu, “An impedance model-based multiparameter identification method of PMSM for both offline and online conditions,” IEEE Trans. Power Electron., vol. 36, no. 1, pp. 727-738, Jan. 2021. [4] C. Li, G. Wang, G. Zhang, N. Zhao, and D. Xu, “Adaptive pseudorandom high-frequency square-wave voltage injection based sensorless control for SynRM drives,” IEEE Trans. Power Electron., vol. 36, no. 3, pp. 3200-3210, Mar. 2021. [5] C. Li, G. Wang, G. Zhang, N. Zhao, Y. Gao, and D. Xu, “Torque ripples minimization of sensorless SynRM drives for low-speed operation using bi-HFSI scheme,” IEEE Trans. Ind. Electron., vol. 68, no. 7, pp. 5559-5570, Jul. 2021. [6] B. Li, G. Wang, S. Liu, N. Zhao, G. Zhang, X. Zhang, and D. Xu, “Modeling and analysis of bridge-leg crosstalk of GaN HEMT considering nonlinear junction capacitances,” IEEE Trans. Power Electron., vol. 36, no. 4, pp. 4429-4439, Apr. 2021. [7] G. Bi, N. Zhao, G. Zhang, R. Jing, G. Wang, and D. Xu, “Current vector angle adaptive adjustment based rotor position offset error suppression method for sensorless PMSM drives,” IEEE Trans. Power Electron., vol. 36, no. 9, pp. 10536-10547, Sep. 2021. [8] Y. Bai, G. Wang, G. Zhang, N. Zhao, and D. Xu, “Position and speed detection method based on cross-decoupling network filtering for gearless traction motor drives at low-speed operation,” IEEE Trans. Power Electron., vol. 36, no. 10, pp. 11862-11874, Oct. 2021. 2020 [1] G. Zhang, H. Zhou, G. Wang, C. Li, and D. Xu, “Current sensor fault-tolerant control for encoderless IPMSM drives based on current space vector error reconstruction,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 8, no. 4, pp. 3658-3668, Dec. 2020. [2] G. Wang, X. Hao, N. Zhao, G. Zhang, and D. Xu, “Current sensor fault-tolerant control strategy for encoderless PMSM drives based on single sliding mode observer,” IEEE Trans. Transport. Electrific., vol. 6, no. 2, pp. 679-689, Jun. 2020. [3] W. Li, X. Zhang, Y. Zhuang, G. Zhang, G. Wang, and D. Xu, “A five-level space vector modulation scheme for parallel operated three-level inverters with reduced line current distortion,” IEEE Trans. Power Electron., vol. 35, no. 10, pp. 11235-11249, Oct. 2020. [4] W. Li, X. Zhang, Z. Zhao, G. Zhang, G. Wang, and D. Xu, “Implementation of five-level DPWM on parallel three-level inverters to reduce common-mode voltage and AC current ripples,” IEEE Trans. Ind. Appl., vol. 56, no. 4, pp. 4017-4027, Jul./Aug. 2020. [5] C. Li, G. Wang, G. Zhang, N. Zhao, and D. Xu, “Review of parameter identification and sensorless control methods for synchronous reluctance machines,” Chin. J. Elect. Eng., vol. 6, no. 2, pp. 7-18, Jun. 2020. [6] D. Ding, G. Zhang, G. Wang, and D. Xu, “Dual antiovervoltage control scheme for electrolytic capacitorless IPMSM drives with coefficient autoregulation,” IEEE Trans. Power Electron., vol. 35, no. 3, pp. 2895-2907, Mar. 2020. [7] D. Ding, G. Wang, N. Zhao, G. Zhang, and D. Xu, “An antiovervoltage control scheme for electrolytic capacitorless IPMSM drives based on stator current vector orientation,” IEEE Trans. Ind. Electron., vol. 67, no. 5, pp. 3517-3527, May 2020. [8] G. Bi, G. Wang, G. Zhang, N. Zhao, and D. Xu, “Low-noise initial position detection method for sensorless permanent magnet synchronous motor drives,” IEEE Trans. Power Electron., vol. 35, no. 12, pp. 13333-13344, Dec. 2020. 2019 [1] N. Zhao, G. Wang, D. Ding, G. Zhang, and D. Xu, “Impedance based stabilization control method for reduced DC-link capacitance IPMSM drives,” IEEE Trans. Power Electron., vol. 34, no. 10, pp. 9879-9890, Oct. 2019. [2] G. Zhang, G. Wang, H. Zhang, H. Wang, G. Bi, X. Zhang, and D. Xu, “Pseudorandom-frequency sinusoidal injection for position sensorless IPMSM drives considering sample and hold effect,” IEEE Trans. Power Electron., vol. 34, no. 10, pp. 9929-9941, Oct. 2019. [3] G. Zhang, G. Wang, H. Wang, D. Xiao, L. Li, and D. Xu, “Pseudorandom-frequency sinusoidal injection based sensorless IPMSM drives with tolerance for system delays,” IEEE Trans. Power Electron., vol. 34, no. 4, pp. 3623-3632, Apr. 2019. [4] Q. Wang, G. Zhang, G. Wang, C. Li, and D. Xu, “Offline parameter self-learning method for general-purpose PMSM drives with estimation error compensation,” IEEE Trans. Power Electron., vol. 34, no. 11, pp. 11103-11115, Nov. 2019. [5] G. Wang, D. Xiao, G. Zhang, C. Li, X. Zhang, and D. Xu, “Sensorless control scheme of IPMSMs using HF orthogonal square-wave voltage injection into a stationary reference frame,” IEEE Trans. Power Electron., vol. 34, no. 3, pp. 2573-2584, Mar. 2019. [6] C. Li, G. Wang, G. Zhang, D. Xu, and D. Xiao, “Saliency-based sensorless control for SynRM drives with suppression of position estimation error,” IEEE Trans. Ind. Electron., vol. 66, no. 8, pp. 5839-5849, Aug. 2019. [7] D. Ding, G. Wang, N. Zhao, G. Zhang, and D. Xu, “Enhanced flux-weakening control method for reduced DC-link capacitance IPMSM drives,” IEEE Trans. Power Electron., vol. 34, no. 8, pp. 7788-7799, Aug. 2019. 2018 [1] G. Zhang, G. Wang, B. Yuan, R. Liu, and D. Xu, “Active disturbance rejection control strategy for signal injection-based sensorless IPMSM drives,” IEEE Trans. Transport. Electrific., vol. 4, no. 1, pp. 330-339, Mar. 2018. [2] D. Xu, B. Wang, G. Zhang, G. Wang, and Y. Yu, “A review of sensorless control methods for AC motor drives,” CES Trans. Electr. Mach. Syst., vol. 2, no. 1, pp. 104-115, Mar. 2018. [3] G. Wang, J. Kuang, N. Zhao, G. Zhang, and D. Xu, “Rotor position estimation of PMSM in low-speed region and standstill using zero-voltage vector injection,” IEEE Trans. Power Electron., vol. 33, no. 9, pp. 7948-7958, Sep. 2018. 2017 [1] G. Zhang, G. Wang, D. Xu, and Y. Yu, “Discrete-time low-frequency-ratio synchronous-frame full-order observer for position sensorless IPMSM drives,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 5, no. 2, pp. 870-879, Jun. 2017. [2] G. Zhang, G. Wang, and D. Xu, “Saliency-based position sensorless control methods for PMSM drives - a review,” Chin. J. Elect. Eng., vol. 3, no. 2, pp. 14-23, Sep. 2017. [3] G. Wang, L. Yang, G. Zhang, X. Zhang, and D. Xu, “Comparative investigation of pseudorandom high-frequency signal injection schemes for sensorless IPMSM drives,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 2123-2132, Mar. 2017. [4] G. Wang, C. Li, G. Zhang, and D. Xu, “Self-adaptive stepsize affine projection based parameter estimation of IPMSM using square-wave current injection,” CES Trans. Electr. Mach. Syst., vol. 1, no. 1, pp. 48-57, Mar. 2017. [5] R. Ni, D. Xu, F. Blaabjerg, K. Lu, G. Wang, and G. Zhang, “Square-wave voltage injection algorithm for PMSM position sensorless control with high robustness to voltage errors,” IEEE Trans. Power Electron., vol. 32, no. 7, pp. 5425-5437, Jul. 2017. 2016 [1] G. Zhang, G. Wang, D. Xu, and N. Zhao, “Adaline-network-based PLL for position sensorless interior permanent magnet synchronous motor drives,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1450-1460, Feb. 2016. [2] G. Zhang, G. Wang, D. Xu, R. Ni, and C. Jia, “Multiple-AVF cross-feedback-network-based position error harmonic fluctuation elimination for sensorless IPMSM drives,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 821-831, Feb. 2016. [3] G. Wang, L. Yang, B. Yuan, B. Wang, G. Zhang, and D. Xu, “Pseudo-random high-frequency square-wave voltage injection based sensorless control of IPMSM drives for audible noise reduction,” IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7423-7433, Dec. 2016. [4] R. Ni, D. Xu, G. Wang, G. Zhang, and C. Li, “Synchronous switching of non-line-start permanent magnet synchronous machines from inverter to grid drives,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3717-3727, May 2016. [5] R. Ni, D. Xu, G. Wang, X. Gui, G. Zhang, H. Zhan, and C. Li, “Efficiency enhancement of general AC drive system by remanufacturing induction motor with interior permanent-magnet rotor,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 808-820, Feb. 2016. 2015 [1] R. Ni, D. Xu, G. Wang, L. Ding, G. Zhang, and L. Qu, “Maximum efficiency per ampere control of permanent-magnet synchronous machines,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2135-2143, Apr. 2015. 2014 [1] G. Wang, H. Zhan, G. Zhang, X. Gui, and D. Xu, “Adaptive compensation method of position estimation harmonic error for EMF-based observer in sensorless IPMSM drives,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 3055-3064, Jun. 2014. [2] G. Wang, J. Xu, T. Li, G. Zhang, H. Zhan, L. Ding, and D. Xu, “Weight-transducerless starting torque compensation of gearless permanent-magnet traction machine for direct-drive elevators,” IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 4594-4604, Sep. 2014. [3] G. Wang, L. Qu, H. Zhan, J. Xu, L. Ding, G. Zhang, and D. Xu, “Self-commissioning of permanent magnet synchronous machine drives at standstill considering inverter nonlinearities,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6615-6627, Dec. 2014. [4] G. Wang, T. Li, G. Zhang, X. Gui, and D. Xu, “Position estimation error reduction using recursive-least-square adaptive filter for model-based sensorless interior permanent-magnet synchronous motor drives,” IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 5115-5125, Sep. 2014. [5] G. Wang, L. Ding, Z. Li, J. Xu, G. Zhang, H. Zhan, R. Ni, and D. Xu, “Enhanced position observer using second-order generalized integrator for sensorless interior permanent magnet synchronous motor drives,” IEEE Trans. Energy Convers., vol. 29, no. 2, pp. 486-495, Jun. 2014. 2013 [1] G. Wang, Z. Li, G. Zhang, Y. Yu, and D. Xu, “Quadrature PLL-based high-order sliding-mode observer for IPMSM sensorless control with online MTPA control strategy,” IEEE Trans. Energy Convers., vol. 28, no. 1, pp. 214-224, Mar. 2013. 2012 [1] G. Wang, G. Zhang, R. Yang, and D. Xu, “Robust low-cost control scheme of direct-drive gearless traction machine for elevators without a weight transducer,” IEEE Trans. Ind. Appl., vol. 48, no. 3, pp. 996-1005, May/Jun. 2012. 专利 名称 序号 名称 专利号 发明人 授权(受理)公告日 33 同步磁阻电机低转矩脉动无传感器控制方法 2019113399455 王高林; 李成睿; 张国强; 赵楠楠; 徐殿国 2022.11.04 32 永磁同步电机高转速下转子初始位置和转速检测方法 2022103861295 张国强; 李润东; 王高林; 王奇维; 丁大尉; 徐殿国 2022.10.25 31 永磁同步电机无位置传感器控制转子位置误差观测方法 2022105421567 王奇维; 王高林; 张国强; 丁大尉; 刘少博; 徐殿国 2022.10.25 30 一种无电解电容Vienna整流器中点电压波动抑制混合调制方法 2022106732173 王高林; 张志坚; 张国强; 丁大尉; 王奇维; 王嘉睿; 李斌兴; 徐殿国 2022.10.14 29 永磁同步电机驱动系统逆变器非线性补偿方法 202110136391X 王高林; 王奇维; 张国强; 赵楠楠; 徐殿国 2022.08.30 28 永磁同步电机转子位置偏移误差在线抑制方法 2021102768720 王高林; 毕广东; 张国强; 赵楠楠; 敬润泽; 徐殿国 2022.08.02 27 周期互补高频方波注入的无传感器控制方法 2021108006716 张国强; 汪思淳; 王高林; 毕广东; 徐殿国 2022.06.24 26 永磁同步电机在线参数辨识方法 2020108030886 王高林; 王奇维; 张国强; 赵楠楠; 徐殿国 2022.03.01 25 永磁同步电机驱动系统的三相电流重构方法 2019108658750 王高林; 白音; 赵楠楠; 张国强; 陈非凡; 徐殿国 2022.01.14 24 无电解电容永磁压缩机驱动系统母线电容容值估计方法 2021100829471 赵楠楠; 王高林; 张国强; 丁大尉; 徐殿国 2022.01.14 23 一种无电解电容永磁同步电机驱动系统防过压控制方法 2019104809520 王高林; 丁大尉; 赵楠楠; 张国强; 胡海明; 王奇维; 徐殿国 2021.11.26 22 母线电容小型化压缩机驱动控制方法 2021103553891 朱良红; 霍军亚; 王高林; 赵楠楠; 张国强; 徐殿国 2021.11.19 21 无电解电容永磁同步电机驱动系统拍频抑制方法 202010989017X 王高林;?丁大尉;?赵楠楠;?张国强;?徐殿国 2021.07.06 20 永磁同步电机无电解电容驱动器电压边界优化过调制方法 2019110668892 王高林;?胡海明;?丁大尉;?赵楠楠;?张国强;?徐殿国 2021.03.09 19 无位置传感器驱动系统电流传感器容错方法 2019104362184 王高林;?周洪雷;?张国强;?李成睿;?王奇维;?赵楠楠;?徐殿国 2021.02.02 18 无电解电容永磁同步电机空调驱动系统的谐振抑制方法 2019106672310 王高林;?白音;?赵楠楠;?张国强;?徐殿国 2020.12.11 17 一种永磁同步电机自抗扰无位置传感器控制方法及控制装置 2019104582201 王高林;?刘然;?张国强;?赵楠楠;?李成睿;?王奇维;?徐殿国 2020.11.13 16 基于混合随机信号注入的永磁电机无位置传感器控制方法 2019104932667 张国强;?王高林;?周洪雷;?赵楠楠;?李成睿;?张鸿鹏;?徐殿国 2020.10.27 15 永磁电机无位置传感器控制方法 2019104881218 张国强;?王高林;?周洪雷;?王奇维;?丁大尉;?徐殿国 2020.10.27 14 一种低噪音的永磁同步电机转子初始位置检测方法 2019103945180 张国强;?毕广东;?王高林;?赵楠楠;?王奇维;?李成睿;?徐殿国 2020.09.01 13 用于无电解电容永磁同步电机的防过压控制系统及方法 201910082181X 王高林;?丁大尉;?张国强;?赵楠楠;?胡海明;?徐殿国 2020.06.09 12 一种无辅助信号注入的永磁同步电机转子位置权重观测器 2018109361198 张国强;?王高林;?毕广东;?赵楠楠;?匡俊耀;?徐殿国 2020.04.24 11 一种考虑数字控制延迟的随机正弦注入永磁电机转子位置观测器的高频噪音抑制方法 2018109167338 张国强;?王高林;?毕广东;?赵楠楠;?王惠颖;?徐殿国 2020.04.24 10 无电解电容永磁同步电机驱动系统弱磁控制方法 2018112349952 王高林;?丁大尉;?赵楠楠;?张国强;?胡海明;?徐殿国 2020.04.24 9 基于低频电压注入法的永磁同步电机无位置传感器的控制方法 2017106926074 王高林;?肖殿勋;?张国强;?赵楠楠;?于泳;?徐殿国 2019.11.15 8 一种永磁同步电机无位置传感器位置观测误差谐波脉冲消除方法 2015106970260 徐殿国;?张国强;?王高林;?倪荣刚 2017.11.17 7 无阻尼绕组永磁同步电动机并网方法 201410445609X 徐殿国;?倪荣刚;?王高林;?张国强;?贵献国 2016.03.30 6 永磁同步电机静止状态下参数离线辨识方法 2013101160075 王高林;?詹瀚林;?李卓敏;?张国强;?贵献国;?徐殿国 2015.09.09 5 一种抑制位置脉动观测误差的永磁同步电机转子位置观测系统及其观测方法 2013106016189 王高林;?李卓敏;?曲立志;?丁力;?张国强;?倪荣刚;?徐殿国 2015.08.19 4 永磁同步电机转子位置观测器 2013101380535 王高林;?张国强;?李卓敏;?李铁链;?于泳;?杨荣峰;?徐殿国 2015.04.15 3 基于自适应滤波的内置式永磁同步电机转子位置观测装置及观测方法 2013101408719 王高林;?张国强;?李卓敏;?詹瀚林;?杨荣峰;?于泳;?徐殿国 2015.02.04 2 电梯永磁曳引系统无称重传感器自适应起动转矩补偿方法 2013104446426 王高林;?李铁链;?徐进;?张国强;?贵献国;?徐殿国 2015.02.04 1 一种内置式永磁同步电机无位置传感器矢量控制装置 2011103293941 王高林;?杨荣峰;?于泳;?徐殿国;?李刚;?张国强;?吴芳 2013.03.13

上一篇:汪新智     下一篇:张科