哈尔滨工业大学

王兵

发布日期:2024-05-10 浏览次数:

基本信息 科学研究(Research) 论文专著(Publications) 学术交流(Academic Exchange) 招生信息 新建主栏目 基本信息(Personal Information) 名称 Dr. Bing Wang Ph.D Supervisor in Engineering Mechanics Center for Composite Materials and Structures(CCMS) National Key Laboratory of Science and Technology on Advanced Composites in Special Environments School of Astronautics, Harbin Institute of Technology, Harbin 150080, P.R.China. 王兵,男,江苏东台人 长聘教授、博士生导师 航天学院 副院长 复合材料与结构研究所 副所长 青年科学家工作室 国家级高层次人才入选者 主要研究方向:多功能复合材料及结构轻量化技术。 作为项目负责人主持国家自然科学基金项目、部委重点项目、科技部重点研发课题及航天航空院所联合项目20余项。研究成果获得国防技术发明一等奖1项、黑龙江省自然科学一等奖1项,授权国家发明专利20余项。 工作履历(Employment history) 名称 Time Employment history 12.2019-Hitherto Professor, Center for Composite Materials and Structures, Harbin Institute of Technology 05.2015-Hitherto Ph.D Supervisor, Center for Composite Materials and Structures, Harbin Institute of Technology 12.2014-12.2019 Associate Professor, Center for Composite Materials and Structures, Harbin Institute of Technology 12.2013-12.2014 Visiting Scholar, School of engineering, Cardiff University, UK 05.2012-05.2015 M.S. Supervisor, Center for Composite Materials and Structures, Harbin Institute of Technology 12.2010-12.2014 Lecturer, Center for Composite Materials and Structures, Harbin Institute of Technology 时间(Time) 工作履历(Employment history) 2019.12-至今 哈尔滨工业大学复合材料与结构研究所 教授 博士生导师 2015.05-至今 哈尔滨工业大学复合材料与结构研究所 博士生导师 2014.12-2019.12 哈尔滨工业大学复合材料与结构研究所 副教授 2013.12-2014.12 英国卡迪夫大学 工程学院 访问学者 2012.05-2015.05 哈尔滨工业大学复合材料与结构研究所 硕士生导师 2010.12-2014.12 哈尔滨工业大学复合材料与结构研究所 讲师 教育经历(Education) 名称 09.2010-07.2004 B.Eng. School of materials science and engineering, Harbin Institute of Technology 08.2004-01.2010 Ph.D School of Astronautics, Harbin Institute of Technology 2000.09-2004.07 哈尔滨工业大学材料学院 工学学士2004.08-2010.01 哈尔滨工业大学航天学院复合材料与结构研究所 硕博连读 工学博士 社会兼职(Professional Affiliations) 名称 中国复合材料学会会员 Members of the Chinese Society of Composite Material 中国复合材料学会青年工作委员会委员 Member of Chinese Society of Youth Work Committee for Composite Material 中国力学学会员 Members of the Chinese Society of Theoretical and Applied Mechanics 《Composite Science and Technology》, 《Composite Part A》, 《Composite Structures》, 《Composites Part B》, 《Materials and Design》, 《Journal of Composite Materials》等学术期刊审稿人. Reviewers of academic journals:《Composite Science and Technology》, 《Composite Part A》, 《Composite Structures》, 《Composites Part B》, 《Materials and Design》, 《Journal of Composite Materials》et al. 科研项目(Research Projects) 项目名称 具有负刚度特性的多孔结构设计及其吸能特性研究 项目来源 国家自然科学基金-面上基金 开始时间 2020.01 结束时间 2023.1 项目经费 74.4万 担任角色 项目类别 项目状态 简单介绍 项目名称 多材料融合新能源汽车轻量化技术研发及产业化应用 项目来源 安徽省发改委-新能源汽车发展项目 开始时间 2018.12 结束时间 2020.09 项目经费 147万 担任角色 项目类别 项目状态 简单介绍 项目名称 微点阵结构力学性能及其尺寸效应研究 项目来源 国家自然科学基金-面上基金 开始时间 2016.01 结束时间 2019.12 项目经费 67.2万 担任角色 项目类别 项目状态 简单介绍 项目名称 超混杂复合材料点阵结构冲击损伤机理及剩余强度研究 项目来源 国家自然科学基金青年基金 开始时间 2013.01 结束时间 2015.12 项目经费 25万 担任角色 项目类别 项目状态 简单介绍 期刊论文 名称 2024 [107] Chen R, Hu J, Li G, et al. Comprehensive Performance of High-Temperature-Resistant and Low-Dielectric-Coefficient Phthalonitrile Resin. ACS Applied Polymer Materials, 2024. [106] Wang D, Hu J, Zhao D, et al. Enhanced mechanical and thermal properties of phenolic-type phthalonitrile nanocomposites with fumed silica nanoparticles. Polymer, 2024: 126783. [105] Ji C, Hu J, Alderliesten R, et al. On the post-impact fatigue behavior and theoretical life prediction of CF/PEEK-titanium hybrid laminates using an energy dissipation approach. Composites Science and Technology, 2024, 245: 110354. [104] Li S, Li M, Hu J, et al. A new strategy for PEEK-based biocomposites to achieve porous surface for bioactivity and adjustable mechanical properties for orthopedic stress matching. Composites Part A: Applied Science and Manufacturing, 2024, 177: 107909. [103] Feng J, Wang D, Hu J, et al. Optimizing the thermal properties of fiber reinforced phthalonitrile composites. Journal of Applied Polymer Science, 2024, 141(2): e54772. 2023 [102] Zhao D, Hu J, Wang D, et al. Reinforcement of mica on phthalonitrile resin and composites: Curing, thermal, mechanical and dielectric properties. Composites Science and Technology, 2023, 244: 110289. [101] Chen S, Liu X, Hu J, et al. Elastic architected mechanical metamaterials with negative stiffness effect for high energy dissipation and low frequency vibration suppression. Composites Part B: Engineering, 2023, 267: 111053. [100] Li M, Wang B, Hu J, et al. A non-local damage model-based FFT framework for elastic-plastic failure analysis of UD fiber-reinforced polymer composites. Composites Communications, 2023, 43: 101730. [99] Liu A, Zou Y, Chen Y, et al. Experimental investigation of impact resistance and compression behavior of CF/PEEK laminates after hot‐press fusion repair with different stacking sequences. Polymer Composites, 2023, 44(10): 6467-6481. [98] Wang J, Zhu S, Chen L, et al. Data mining from a hierarchical dataset for mechanical metamaterials composed of curved-sides triangles. Composite Structures, 2023, 319: 117153. [97] Zhang Y, Wu L, Sun Y, et al. CCCs off-axial orientation sensitivity analysis in hole pin-bearing failure via hierarchical multiscale simulation framework. Composite Structures, 2023, 310: 116759. [96] Chen Y, Yang J, Peng J, et al. Low-velocity impact (LVI) and post-impact fatigue properties of GLARE laminates with holes. International Journal of Fatigue, 2023, 167: 107318. [95] Wang L, Martínez J A I, Ulliac G, et al. Non-reciprocal and Non-Newtonian Mechanical Metamaterials. Nature Communications, 14, 4778 (2023). [94] Liu X, Tan X, Wang B, et al. Research on hierarchical cylindrical negative stiffness structures’ energy absorption characteristics. Smart Materials and Structures, 2023, 32(8): 085027. [93] Chen S, Lian X, Zhu S, et al. A Re-usable Negative Stiffness Mechanical Metamaterial Composed of Bi-material Systems for High Energy Dissipation and Shock Isolation. Composite Structures, 2023: 117366. [92] Li S, Li G, Lian X, et al. Integrated porous polyetheretherketone hydroxyapatite scaffolds: design, manufacturing and performance evaluation. Composites Part A: Applied Science and Manufacturing, 2023: 107656. [91] Tan X, Li Y, Wang L, et al. Bioinspired flexible and programmable negative stiffness mechanical metamaterials. Advanced Intelligent Systems, 2023: 2200400. [90] Ji C, Hu J, Sadighi M, et al. Experimental and theoretical study on residual ultimate strength after impact of CF/PEEK-titanium hybrid laminates with nano-interfacial enhancement. Composites Science and Technology, 2023, 232: 109871. [89] Chen R, Zhang J, Chen H, et al. Toughening mechanism of phthalonitrile polymer: MD simulation and experiment. Composites Science and Technology, 2023, 232: 109841. 2022 [88] Liu A, Chen Y, Hu J, et al. Low‐velocity impact damage and compression after impact behavior of CF/PEEK thermoplastic composite laminates. Polymer Composites, 2022, 43(11): 8136-8151. [87] Wang LC, Ulliac G, Wang B, et al. 3D Auxetic Metamaterials with Elastically-Stable Continuous Phase Transition. Advanced Science, 2022, 2204721. [86] Tan X, Martínez J A I, Ulliac G, et al. Single‐Step‐Lithography Micro‐Stepper Based on Frictional Contact and Chiral Metamaterial. Small, 2022, 18(28): 2202128. [85] Hu J, Ji C, Chen S, et al. Two-position impact behavior and interference mechanism of CFF/PEEK thermoplastic composites. International Journal of Mechanical Sciences, 2022, 232: 107644. [84] Hu J, Zhang H, Li S, et al. Process parameter–mechanical property relationships and influence mechanism of advanced CFF/PEEK thermoplastic composites. Polymer Composites, 2022,43(8): 5119. [83] Tan X, Wang L, Zhu S, et al. A general strategy for performance enhancement of negative stiffness mechanical metamaterials. European Journal of Mechanics-A/Solids, 2022, 96: 104702. [82] Ji C, Guo J, Hu J, et al. Enhanced interfacial adhesion of CF/PEEK-titanium hybrid laminates via introducing micro-nano layers with multi-walled carbon nanotube networks. Composites Science and Technology, 2022, 223: 109418. [81] Chen S, Tan X, Hu J, et al. Continuous carbon fiber reinforced composite negative stiffness mechanical metamaterial for recoverable energy absorption. Composite Structures, 2022, 288: 115411. [80] Tan X, Wang B, Wang L, et al. Effect of beam configuration on its multistable and negative stiffness properties. Composite Structures, 2022, 286: 115308. [79] Zhu S, Wang B, Chen L, et al. Enhance the energy dissipation ability of sleeve-type negative stiffness structures via a phase-difference mechanism. International Journal of Mechanical Sciences, 2022, 213: 106803. 2021 [78] Li S, Wang T, Hu J, et al. Effect of hydroxyapatite content and particle size on the mechanical behaviors and osteogenesis in vitro of polyetheretherketone–hydroxyapatite composite. Polymer Composites, 2021, 42(12): 6512-6522. [77] Li S, Li G, Hu J, et al. Porous polyetheretherketone-hydroxyapatite composite: A candidate material for orthopedic implant. Composites Communications, 2021, 28: 100908. [76] Li S, Wang T, Hu J, et al. Surface porous poly-ether-ether-ketone based on three-dimensional printing for load-bearing orthopedic implant. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 120: 104561. [75] Wang L, Tan X, Zhu S, et al. Directional instability-driven strain-dependent 3D auxetic metamaterials. International Journal of Mechanical Sciences, 2021, 199: 106408. [74] Chen S, Tan X, Hu J, et al. A novel gradient negative stiffness honeycomb for recoverable energy absorption. Composites Part B: Engineering, 2021, 215: 108745. [73] Ji C, Chen Y, Yang J, et al. Dent-repaired fatigue performance and life prediction of thin sheet specimens under coupled multi-stage damage with impact and pre-fatigue. International Journal of Fatigue, 2021, 146: 106148. [72] Chen Z, Wang B, Pan S, et al. Damage analysis of shear pre-deformed 3D angle-interlock woven composites using experiment and non-orthogonal finite element model. Composites Communications, 2021, 28: 100978. [71] Wang L, Zhu S, Wang B, et al. Latitude-and-longitude-inspired three-dimensional auxetic metamaterials. Extreme Mechanics Letters, 2021, 42: 101142. [70] Zhang H, Wang B, Hu J, et al. Curing behavior studies of phenol-containing phthalonitrile monomer for advanced composite materials. Thermochimica Acta, 2021, 696: 178837. [69] Zhu S, Wang B, Tan X, et al. A novel bi-material negative stiffness metamaterial in sleeve-type via combining rigidity with softness. Composite Structures, 2021, 262: 113381. [68] Ji C, Hu J, Wang B, et al. Mechanical behavior prediction of CF/PEEK-titanium hybrid laminates considering temperature effect by artificial neural network. Composite Structures, 2021, 262: 113367. [67] Hu J, Zhu S, Wang B, et al. Fabrication and compression properties of continuous carbon fiber reinforced polyether ether ketone thermoplastic composite sandwich structures with lattice cores. Journal of Sandwich Structures & Materials, 2021, 23(6): 2422-2442. [66] Gao L, Zhao X C, Wang B. Thermostructural responses of metallic lattice-frame sandwich structure for hypersonic leading edges. Journal of Thermophysics and Heat Transfer, 2021, 35(4): 708-714. 2020 [65] Tan X, Chen S, Wang B*, et al. Real-time tunable negative stiffness mechanical metamaterial. Extreme Mechanics Letters, 2020, 41: 100990. [64] Jiqiang Hu, Chunming Ji, Shuai Chen, Shuai Li, Bing Wang*, Zhengong Zhou. Novel mathematical-statistical models for the distribution of fatigue life and residual strength for fiber reinforced polymer composites. International Journal of Applied Mechanics, 2020, 12(09): 2050104. [63] Jiqiang Hu, Ankang Liu, Shaowei Zhu, Hanqi Zhang, Bing Wang*, Huayong Zheng, Zhengong Zhou. Novel panel-core connection process and impact behaviors of CF/PEEK thermoplastic composite sandwich structures with truss cores. Composite Structures, 2020, 251: 112659. [62] Shaowei Zhu, Jiqiang Hu, Xiaojun Tan, Bing Wang*, Shuai Chen, Li Ma. Mechanics of Sandwich Panels with a Buckling-dominated Lattice Core: The Effects of The Initial Rod Curvatures. Composite Structures, 2020, 251: 112669. [61] Hanqi Zhang, Bing Wang*, Yanna Wang, Heng Zhou. Novolac/Phenol-Containing Phthalonitrile Blends: Curing Characteristics and Composite Mechanical Properties. Polymers, 2020, 12(1): 126. [60] Jiqiang Hu, Fei Li, Bing Wang*, Hanqi Zhang, Chunming Ji, Shixun Wang, Zhengong Zhou. A two-step combination strategy for significantly enhancing the interfacial adhesion of CF/PPS composites: The liquid-phase oxidation followed by grafting of silane coupling agent. Composites Part B: Engineering, 2020, 191: 107966. [59] Ji C, Wang B*, Hu J, et al. Effect of different preparation methods on mechanical behaviors of carbon fiber-reinforced PEEK-Titanium hybrid laminates. Polymer Testing, 2020, 85: 106462. [58] XJ Tan, SW Zhu, B Wang*, KL Yao, S Chen, PF Xu, LC Wang, Yuguo Sun. Mechanical response of negative stiffness truncated-conical shell systems: experiment, numerical simulation and empirical model. Composites Part B: Engineering, 2020, 188: 107898. [57] Liu A, Wang B*, Li F. High performance thermoplastic polymer for the compressive behaviour of carbon fibre reinforced composites. Pigment & Resin Technology, 2020. [56] Zhu S, Tan X, Chen S, Wang Bing*. Quasi‐All‐Directional Negative Stiffness Metamaterials Based on Negative Rotation Stiffness Elements. Physica Status Solidi (b), 2020, 257(6): 1900538. [55] Shuai Chen, Bing Wang*, Shaowei Zhu, Xiaojun Tan, Jiqiang Hu, Xu Lian, Lianchao Wang, Linzhi Wu. A Novel Composite Negative Stiffness Structure for Recoverable Trapping Energy. Composites Part A: Applied Science and Manufacturing, 2020, 129: 105697. [54] Xiaojun Tan, Bing Wang*, Yongtao Yao, Kaili Yao, Yuying Kang, Shaowei Zhu, Shuai Chen, Peifei Xu. Programmable Buckling-based Negative Stiffness Metamaterial. Materials Letters, 2020, 262: 127072. [53] Chen Y, Ji C, Pan X, Yang J, Wang B. Effect of staggered holes with multi-site damage on fatigue performance based on tests, DIC technique and numerical calculations. Thin-Walled Structures, 2020, 148: 106607. [52] Li H, Zhang Q, Jia J, Ji C, Wang B*, Yan S*. Study on low-velocity impact damage and residual strength of reinforced composite skin structure. Materials, 2020, 13(11): 2573. 2019 [51] Hang Yang, Bing Wang, Li Ma*. Mechanical properties of 3D double-U auxetic structures. International Journal of Solids and Structures. 2019. 180-181:13-29 [50] Hang Yang, Bing Wang, Li Ma*. Designing hierarchical metamaterials by topology analysis with tailored Poisson’s ratio and Young’s modulus. Composite Structures. 2019, 214:359-378. [49] Xiaojun Tan, Bing Wang*, Kaili Yao, Shaowei Zhu, Shuai Chen, Peifei Xu, Lianchao Wang, Yuguo Sun. Novel multi-stable mechanical metamaterials for trapping energy through shear deformation. International Journal of Mechanical Sciences, 2019, 164: 105168. [48] Xiaojun Tan, Bing Wang*, Shaowei Zhu, Shuai Chen, Kaili Yao, Peifei Xu, Linzhi Wu, Yuguo Sun. Novel multidirectional negative stiffness mechanical metamaterials. Smart Materials and Structures, 2019, 29(1): 015037. [47] Shuai Li, Tengteng Zheng, Qi Li, Yingcheng Hu*, Bing Wang*. Fabrication, flexural, and energy absorption properties of natural fiber-reinforced epoxy composites. Composites Communications. 2019,16:124-131. [46] ShaoweiZhu, XiaojunTan, Bing Wang*, ShuaiChen, JiqiangHu, LiMa, LinzhiWu. Bio-inspired multistable metamaterials with reusable large deformation and ultra-high mechanical performance. Extreme Mechanics Letters, 2019, 32: 100548. [45] Bing Wang*, Xiaojun Tan, Shaowei Zhu , Shuai Chen, Kaili Yao , Peifei Xu, Lianchao Wang, Huaping Wu , Yuguo Sun. Cushion performance of cylindrical negative stiffness structures: Analysis and optimization. Composite Structures, 2019, 227: 111276. . [44] Xiaojun Tan, Shuai Chen, Bing Wang*, Shaowei Zhu, Linzhi Wu, Yuguo Sun. Design fabrication, and characterization of multistable mechanical metamaterials for trapping energy. Extreme Mechanics Letters, 2019, 28:8-21 [43] Xiaojun Tan , Shuai Chen , Shaowei Zhu , Bing Wang*, Peifei Xu , Kaili Yao , Yuguo Sun. Reusable Metamaterial via Inelastic Instability for Energy Absorption. International Journal of Mechanical Sciences, 2019, 155: 509-517. [42] Xiaojun Tan, Bing Wang*, Shuai Chen, ShaoweiZhu, Yuguo Sun. A Novel Cylindrical Negative Stiffness Structure for Shock Isolation, Composite Structures. 2019,214;397-405. [41] Yu H, Wang B. Stress intensity factor evaluations for a curved crack in orthotropic particulate composites using an interaction integral method. Mechanics of Advanced Materials and Structures, 2019, 26(7): 631-638. [40] Li S, Qin J, Wang B, et al. Design and compressive behavior of a photosensitive resin-based 2-D lattice structure with variable cross-section core. Polymers, 2019, 11(1): 186. 2018 [39] Zou H, Yin W, Cai C, Wang B, et al. The out-of-plane compression behavior of cross-ply AS4/PEEK thermoplastic composite laminates at high strain rates. Materials, 2018, 11(11): 2312. [38] Hanhua Li,Yongtao Yao, Liuyu Guo, Qiuhua Zhang, Bing Wang*. The Effects of delamination deficiencies on compressive mechanical properties of reinforced composite skin structures. Composites Part B: Engineering, 2018,155:138-147 [37] YongtaoYao, YunLuo, Yuncheng Xu, Bing Wang, Jinyang Li, Han Deng, Haibao Lu. Fabrication and characterization of auxetic shape memory composite foams. Composites Part B: Engineering,2018, 152: 1-7 [36] Wang B, Hu J Q, Li Y Q, et al. Mechanical properties and failure behavior of the sandwich structures with carbon fiber-reinforced X-type lattice truss core. Composite Structures, 2018, 185: 619-633. [35] Zhu S, Ma L, Wang B*, et al. Lattice materials composed by curved struts exhibit adjustable macroscopic stress-strain curves. Materials Today Communications, 2018, 14: 273-281. [34] Xin-Tao Wang, Bing Wang, Zhi-Hui Wen, Li Ma. Fabrication and mechanical propertiesof CFRP composite three-dimensional double-arrow-head auxetic structures. Composites Science and Technology.2018,164:92-102 [33] Yongtao Yao, Yun Luo, Haibao Lu*, Bing Wang*. Remotely actuated porous composite membrane with shape memory property. Composite Structures. 2018,192;507-515. 2017 [32] Yang Chen, Leiting Dong, Bing Wang, Yuli Chen, Zhiping Qiu, Zaoyang Guo. A substructure-based homogenization approach for systems with periodic microstructures of comparable sizes. Composite Structures. 2017,169;97-104 [31] Yihua Mo,Gengdong Cheng,Bing Wang*,Xiaohong Wang. The effects of delamination deficiencies on compressive properties of composite grid-stiffened structures. Mechanics of Advanced Materials and Structures, 2018, 25(11): 901-916. [30] Meirong Hao, Yingcheng Hu, Bing Wang, Shuo Liu. Mechanical behavior of natural fibers based isogrid lattice cylinder. Composite Structures. 2017,176: 117-123 [29] Xin-Tao Wang, Bing Wang, Xiao-Wen Li, Li Ma. Mechanical properties of 3D re-entrant auxetic cellular structures. International Journal of Mechanical Sciences. 2017, 131-132:396-407. [28] Yao Y, Xu Y, Wang B, et al. Recent development in electrospun polymer fiber and their composites with shape memory property: a review. Pigment & Resin Technology, 2018, 47(1): 47-54. 2015 [27] Mingmin Jin, Yingcheng Hu, Bing Wang. Compressive and bending behaviours of wood-based two-dimensional lattice truss core sandwich structures. Composite Structures, 2015,124: 337-344. 2014 [26] Bing Wang, Guoqi Zhang, Qilin He, Li Ma , Linzhi Wu , Jicai Feng. Mechanical behavior of carbon fiber reinforced polymer composite sandwich panels with 2-D lattice truss cores. Materials and Design, 2014,55:591-596. [25] Guoqi Zhang, Bing Wang, Li Ma, Linzhi Wu, Shidong Pan, Jinshui Yang. Energy absorption and low velocity impact response of polyurethane foam filled pyramidal lattice core sandwich panels. Composite Structures, 2014, 108:304-310. [24] Bing Wang, Guoqi Zhang, Shixun Wang, Li Ma, Linzhi Wu. High velocity impact response of composite lattice core sandwich structures. Applied Composite Materials. 2014, 21:377-389. [23] Jian Xiong, Bing Wang, Li Ma, Jim Papadopoulos, Ashkan Vaziri, Linzhi Wu. Three-dimensional Composite Lattice Structures Fabricated by Electrical Discharge Machining. Experimental Mechanics, 2014, 54:405-412. [22] Jia Lou, Linzhi Wu, Li Ma, Jian Xiong, Bing Wang. Effects of local damage on vibration characteristics of composite pyramidal truss core sandwich structure. Composites Part B: Engineering, 2014, 62:73–87. 2013 [21] Bing Wang, Jian Xiong, Xiaojun Wang, Li Ma , Guo-Qi Zhang, Lin-Zhi Wu , Ji-Cai Feng. Energy absorption efficiency of carbon fiber reinforced polymer laminates under high velocity impact. Materials and Design. 2013, 50:140-148 [20] Guoqi Zhang, Bing Wang, Li Ma, Jian Xiong, Linzhi Wu. Response of sandwich structures with pyramidal truss cores under the compression and impact loading. Composite Structures. 2013,100: 451–463 [19] Guoqi Zhang, Bing Wang, Li Ma, Jian Xiong, Linzhi Wu. The residual compressive strength of impact-damaged sandwich structures with pyramidal truss cores. Composite Structures.2013, 105, 188–198 [18] Jia Lou, Bing Wang, Li Ma, Lin-Zhi Wu. Free vibration analysis of lattice sandwich beams under several typical boundary conditions. Acta Mechanica Solida Sinica.2013,26(5): 458–467 [17] Jinshui Yang, Jian Xiong, Li Ma, Bing Wang, Guoqi Zhang, Linzhi Wu. Vibration and damping characteristics of hybrid carbon fiber composite pyramidal truss sandwich panels with viscoelastic layers. Composite Structures. 2013; 106: 570-580. 2012 [16] 吴林志, 熊健, 马力, 王兵, 张国旗, 杨金水. 新型复合材料点阵结构的研究进展. 力学进展. 2012, 42(1):41-67. [15] Guo-Qi Zhang, Li Ma, Bing Wang, Lin-Zhi Wu. Mechanical behaviors of CFRP sandwich structures with tetrahedral lattice truss cores. Composites Part B: Engineering, 2012, 43(2):471-476. [14] Jia Lou, Bing Wang, Li Ma, Lin-Zhi Wu. Three-point Bending Properties of Composite Lattice Sandwich Structures with Tetrahedral Truss Cores. International Journal of Aerospace and Lightweight Structures. 2012, 2(2):1-10. [13] Jia Lou, Bing Wang, Li Ma, Lin-Zhi Wu. Buckling of carbon fiber composite pyramidal truss core sandwich column. Journal of Harbin Institute of Technology (New Series). 2012, 19(5):99-106 [12] 吴林志, 熊健, 马力, 王兵, 泮世东, 刘海涛. 轻质夹层多功能结构一体化设计. 力学与实践, 2012,34(4): 8-18. [11] 王兵,冯吉才,李庆飞, 吴林志, 马力. 纤维柱增强泡沫夹芯的等效力学性能研究. 哈尔滨工业大学学报.2012,44(3)29-33. 2011 [10] Bing Wang, Lin-Zhi Wu, Li Ma, Ji-Cai Feng. Low-velocity impact characteristics and residual tensile strength of carbon fiber composite lattice core sandwich structures. Composites Part B: Engineering, 2011, 42(4):891-897. [9] Ming Li, Linzhi Wu, Li Ma, Bing Wang, Zhengxi Guan. Structural response of all-composite pyramidal truss core sandwich columns in end compression. Composite Structures. 2011, 93(8):1964-1972. [8] Ming Li, Linzhi Wu, Li Ma, Bing Wang, Zhengxi Guan. Mechanical response of all-composite pyramidal lattice truss core sandwich structures. Journal of Materials Science & Technology. 2011, 27(6):570-576. [7] Ming Li, Linzhi Wu, Li Ma, Bing Wang, Zhengxi Guan. Structural design of pyramidal truss core sandwich beams loaded in 3-point bending. Journal of Mechanics of Materials and Structures. 2011, 6(9-10):1255-1266. 2010 [6] Jian Xiong, Li Ma, Linzhi Wu, Bing Wang, Ashkan Vaziri. Fabrication and crushing behavior of low density carbon fiber composite pyramidal truss structures. Composite Structures. 2010, 92(11): 2695-2702. [5] Bing Wang, Lin-Zhi Wu, Xin Jin, Shan-Yi Du, Yu-Guo Sun, Li Ma. Experimental investigation of 3D sandwich structure with core reinforced by composite columns. Materials and Design. 2010, 31(1):158-165. [4] Bing Wang, Lin-Zhi Wu, Li Ma, Yu-Guo Sun, Shan-Yi Du. Mechanical behavior of the sandwich structures with carbon fiber-reinforced pyramidal lattice truss core. Materials and Design. 2010, 31(5): 2659-2663. [3] 王兵,吴林志,杜善义,孙雨果,马力. 碳纤维增强金字塔点阵夹芯结构的抗压缩性能. 复合材料学报. 2010, 27(1):133-138. 2009 [2] Wang B, Wu L, Ma L, et al. Fabrication and testing of carbon fiber reinforced truss core sandwich panels. Journal of Materials Sciences and Technology, 2009, 25(04): 547. 2008 [1] Wu H, Wu L, Wang B, et al. Effective biaxial modulus and strain energy density of ideally (h k l)-fiber-textured hexagonal, tetragonal and orthorhombic films. Applied Surface Science, 2008, 255(5): 2000-2005. 学术会议 名称 博士生胡记强参加第22届国际复合材料大会(ICCM-22,澳大利亚 墨尔本,2019.08.11-16) 博士生谭小俊赴美参加第18届全美力学大会,与美国国家工程院院士、中国科学院外籍院士、美国西北大学黄永刚教授会后交流 第21届国际复合材料大会(ICCM-21,中国西安,2017.08.20-25) 招生信息 名称 主要研究方向:先进轻质复合材料/结构、多功能超材料/超结构的设计制备、性能表征研究;耐高温树脂基复合材料及其工程化结构研制;纤维增强复合材料力学的计算方法研究等。 每年可招收博士2~4名,硕士2~3名,课题组经费充足,科研设备齐全。欢迎力学、数学、计算机、机械等相关专业同学保送或报考研究生,力学、数学功底扎实者、编程能力良好者可考虑优先录取。 联系邮箱:wangbing86@hit.edu.cn 提示:硕士研究生需在复试前后提前联系(提供个人简历、成果材料等);博士研究生采用申请-考核制,务必提前一年联系(提供个人简历、科研成果材料等)。

上一篇:王超     下一篇:陈明君